ワシントン大学にある研究所のIHME(Institute for Health Metrics and Ecaluation)では,COVID-19 Projections として,米国の新型コロナウイルス感染症についての予測を行っている。入院病床,ICU病床,人工呼吸器などの必要数がシミュレーションされている。それによればこれらは4月の中旬にピークアウトし,ピーク時の必要病床数波26万床(必要ICU病床数は4万床)である。また,7月の初旬には終息するとされている。また7月段階での死亡数は9万人以上に達する。
これは,3月27日付の論文 "Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator- days and deaths by US state in the next 4 months" によるものであり,Githubには彼らのGeneric curve fitting package with nonlinear mixed effects model の説明とそのコードもある。
これを我々のSIIDR2モデルで追試してみる。まず米国のデータをWHOのSituation Reportsからとって人口で正規化すると1万人当りの新規感染数累計ykと死亡数累計zkが得られる。なお,新規感染数累計が人口の1ppmを超えた基準日は3/10であり,3/10から4/3までの25日分のデータを与える。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
xa=[0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24]
ya=[0.014,0.021,0.030,0.038,0.051,0.051,0.051,0.106,0.107,0.215,
0.317,0.462,0.462,0.958,1.28,1.58,1.93,2.07,2.59,3.14,
3.72,4.27,4.95,5.68,6.48]
za=[0.06,0.08,0.09,0.11,0.12,0.12,0.12,0.18,0.18,0.30,
0.46,0.61,0.61,1.22,1.43,2.04,2.68,3.01,3.77,5.06,
6.41,7.28,8.65,11.7,14.6]/100
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SIIDR2モデル計算の下図の結果は次のパラメタで与えられる。
$\beta = 0.72, \nu = 0.03, \lambda = 21, \tau = 14, \alpha_1 = 5.0/0.80 ,\alpha_2 = 5.0/0.20, \gamma_1 = 15/0.87, \gamma_2 = 15/0.13$
これまでの韓国や湖北省の計算では,$\gamma_1 = 15/0.96, \gamma_2 = 15/0.04$に固定していたが,それでは死亡数が再現できなかったので約3倍の値に設定していることに注意する。これによって1万人当たり(米国の人口は3.27億人なので下記を3270倍すると実人数になる)の値が得られる。
図1 米国の感染カーブ(u3=重症感染数,u4=死亡数,u6=新規感染数累計)
図2 米国の感染カーブ(同上,u5=回復(免疫獲得)数)
我々のモデルでもIHME予測の定性的な振る舞いを再現することができる。
① 4月の中旬(t=35)に重症感染数はピークアウトする(図1u3のピーク位置)。
② ピーク時の必要病床数は26万床に達する(図1 u3のピーク値)。
③ 7月上旬(t=110)段階の死亡数は9万人に達する(図1のu4の収束値)。
④ 7月上旬(t=110)には終息している。
⑤ 終息後の米国の集団免疫率は1%にすぎない(図2のu6の値100/1万=1%)
[1]基本再生産数と集団免疫率(2020.3.27)
[2]倍加時間と基本再生産数(2020.3.29)
[3]新規感染数累計の増倍率(2020.3.31)
[4]湖北省の集団免疫率(2020.3.28)
[5]韓国の集団免疫率(2020.4.3)
[6]感染症の数理シミュレーション(8)(2020.3.15)