ラベル 物理 の投稿を表示しています。 すべての投稿を表示
ラベル 物理 の投稿を表示しています。 すべての投稿を表示

2024年3月4日月曜日

相対論的な速度の合成則

慣性系S $(ct,x,y,z)$ に対して,時刻 $t=t'=0$ で重なっている慣性系S' $(ct',x'y'z')$を考える。S'がSに対して$x$軸方向に速度$v$で等速直線運動している。このときガリレイ変換では,各座標成分は次式で結ばれる。
$\begin{cases} ct'= c t\\ x'= x - v t  \\ y'= y \\ z'= z \end{cases}$
ローレンツ変換では,$(ct')^2-x'^2-y'^2-z'^2 = (ct)^2-x^2-y^2-z^2$ となることから,
$\begin{cases} ct'= \gamma (c t - \beta x) \\ x'=\gamma (x - \beta ct)  \\ y'= y \\ z'= z \end{cases}$
である。ただし,$\beta = \dfrac{v}{c} , \ \ \gamma = \dfrac{1}{\sqrt{1-\beta^2}}$とする。

(1) 任意の方向のローレンツ変換

2つの慣性系に共通である座標系基本ベクトルを$\ (\bm{e}_x,\ \bm{e}_y,\ \bm{e}_z)\ $とすると,
それぞれの位置ベクトルは,$\bm{r}= x \bm{e}_x + y \bm{e}_y + z \bm{e}_z$と$\bm{r'}= x' \bm{e}_x + y' \bm{e}_y + z' \bm{e}_z$ で与えられる。そこで,ローレンツ変換の式をベクトルで表現すると次のようになる。
$\begin{cases} ct'= \gamma (c t - \beta \bm{e}_x\cdot\bm{r}) \\ \bm{e}_x \cdot \bm{r'} =\gamma ( \bm{e}_x \cdot \bm{r} - \beta ct) =\bm{e}_x \cdot \bm{r} + (\gamma-1)\bm{e}_x \cdot \bm{r}  - \gamma  \beta ct  \\ \bm{e}_y \cdot \bm{r'}=  \bm{e}_y \cdot \bm{r} \\ \bm{e}_z \cdot \bm{r'}=  \bm{e}_z \cdot \bm{r} \end{cases}$
空間成分の3式の各々に対応する成分の基本ベクトルを掛けて加えると次式となる。
$\begin{cases} ct'= \gamma (c t - \beta \bm{e}_x\cdot\bm{r}) \\ \bm{r'} = \bm{r}+(\gamma-1)\bm{e}_x \cdot \bm{r} \bm{e}_x- \gamma \beta ct  \bm{e}_x\end{cases}$
さらに,$ \beta \bm{e}_x = \bm{\beta}$として速度ベクトルを表現すると,$\bm{e}_x = \dfrac{\bm{\beta}}{\beta}$ であるから,
$\begin{cases} ct'= \gamma (c t - \bm{\beta} \cdot \bm{r}) \\ \bm{r'} = \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta} =  \bm{r}+\dfrac{\gamma^2}{\gamma + 1}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\end{cases}$

(2) ローレンツ変換における速度の合成則

S系とS'系とS"系を考える。S'系はS系に対して速度$\bm{v}$,S"系はS'系に対して速度
$\bm{u}$で運動している。$\bm{\beta}=\bm{v}/c,\ \gamma=1/\sqrt{1-\beta^2},\ \bm{\beta}'=\bm{u}/c,\ \gamma'=1/\sqrt{1-\beta'^2} $とする。

$\begin{cases} ct'= \gamma (c t - \bm{\beta} \cdot \bm{r}) \\ \bm{r'} = \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta} =  \bm{r}+\dfrac{\gamma^2}{\gamma + 1}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\end{cases}$
$\begin{cases} ct''= \gamma' (c t' - \bm{\beta'} \cdot \bm{r'}) \\ \bm{r''} = \bm{r'}+\dfrac{\gamma'-1}{\beta'^2}\bigl( \bm{\beta'} \cdot \bm{r'} \bigr) \bm{\beta'}- \gamma' ct'  \bm{\beta'} =  \bm{r'}+\dfrac{\gamma'^2}{\gamma' + 1}\bigl( \bm{\beta'} \cdot \bm{r'} \bigr) \bm{\beta'}- \gamma' ct'  \bm{\beta'}\end{cases}$
$ct''$に第1式と第2式を代入する。
$ct''= \gamma'  \gamma (c t - \bm{\beta} \cdot \bm{r})-\gamma' \bm{\beta'} \cdot \Bigl\{ \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\Bigr\}$
$\quad =  \gamma'  \gamma (1 + \bm{\beta'}\cdot\bm{\beta} ) ct -\gamma'(\gamma\bm{\beta}+\bm{\beta'})\cdot \bm{r} - \dfrac{\gamma'(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta}\cdot \bm{r}$
$\quad \equiv \gamma'' (c t - \bm{\beta''} \cdot \bm{r})$
これから,
$\begin{cases} \gamma''  = \gamma'  \gamma (1 + \bm{\beta'}\cdot\bm{\beta}) \\ \gamma'' \bm{\beta''} =  \gamma'(\gamma\bm{\beta}+\bm{\beta'})+ \dfrac{\gamma'(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta} \end{cases}$
$\therefore \bm{\beta''} = \dfrac{1}{\gamma (1 + \bm{\beta'}\cdot\bm{\beta})}\Bigl\{ \bm{\beta'} + \gamma \bm{\beta} +  \dfrac{(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta}  \Bigr\}$
$ \bm{\beta''}$ が合成された速度ベクトルを光速$c$で割った量となる。

(3) 1次元の場合の速度の合成則

上の式のベクトルの一方向成分だけを取り出して扱うと,
$\displaystyle \dfrac{w}{c}= \dfrac{1}{\gamma \Bigl(1+\dfrac{u v}{ c^2}\Bigr)} \Bigl\{ \dfrac{u}{c} + \gamma \dfrac{v}{c} + (\gamma-1) \dfrac{u}{c} \Bigr\} = \dfrac{u + v}{c \Bigl( 1 + \dfrac{u v}{c^2} \Bigl)} $

2024年2月28日水曜日

束縛力のする仕事

束縛された質点の運動において,その進行方向と垂直な抗力(束縛力)が働いているとき,位置ベクトル$\bm{r}$にある質点に対して,束縛力$\bm{F}_R$がする仕事$W$はゼロになる。これは,$\displaystyle W=\int \bm{F}_{R}\cdot dr = 0\ $からくる。


図:束縛運動をするバネで結ばれた2質点系とその重心

上図のように,2つの質点がバネで結ばれ互いに内力を及ぼしている系を考える。それぞれの質点は原点を通る2本の直線上を運動するように束縛されている。2つの質点の質量が等しく,初期位置として原点から等距離に静止していたとする。このときのバネの長さが自然長より短ければ,$x$軸方向に弾性力(斥力)が働く。この斥力(内力)の直線方向の成分によって,質点は$y$軸正方向の運動成分を持つことになる。

一方,束縛された質点が直線方向に運動するのは,各質点に働く束縛力(外力)とバネの弾性力(内力)の合力が直線方向を向くからである(摩擦力はないとする)。ところで,この外力(束縛力)は,質点の移動において仕事をすることはない。仕事をするのは,内力(バネの弾性力)である。

この系における質点の重心の運動を考えてみる。重心の運動には系の内力(弾性力)は寄与せず,外力の和だけが運動を決定する。ところで,先ほど見たように外力(束縛力)は仕事をしないはずだ。それにもかかわらず重心は$y$軸方向に運動し,運動エネルギーを持つことになる。これはなぜかというのが,よく問われる定番の問題だ。

外力と内力が働く質点系の運動方程式は次のようになる。
$\displaystyle m_i \dfrac{d^2 \bm{r}_i}{dt^2} = \bm{F}^{ex}_i + \sum_{j=1}^{N} \bm{F}^{in}_{ji} \quad (i = 1 \cdots N)$
すべての粒子に対して加えると,内力が作用反作用の法則から打ち消しあうので,重心座標($\bm{r}_G = (1/M) \sum_{i=1}^N \bm{r}_i, \quad M=\sum_{i=1}^N m_i$)と相対座標($\bm{\tilde{r}}_i = \bm{r}_i -\bm{r}_G$)に対する運動方程式が得られる。
$\displaystyle M \dfrac{d^2 \bm{r}_G}{dt^2} = \sum_{i=1}^N \bm{F}^{ex}_i = \bm{F}^{ex}$,$\displaystyle m_i \dfrac{d^2 \bm{\tilde{r}}_i }{dt^2} = \bm{F}_i^{ex} +\sum_{j=1}^N\Bigl( -\dfrac{m_i}{M} \bm{F}_j^{ex} + \bm{F}_{ji}^{in} \Bigr)\ \  (i = 1 \cdots N)$
それぞれの式の両辺に,重心の速度や相対速度をかけて積分することによって,運動エネルギー(全体は$T$,重心運動は$T_G$,相対運動は$\tilde{T}$)の変化と仕事$W$の関係を表わす式(エネルギー保存則につながるもの)が得られる。

$ \displaystyle T(t_2)-T(t_1)= \sum_{i=1}^N \int_{t_1}^{t_2} \bm{F}_i^{ex}\cdot \dfrac{d\bm{r}_i}{dt} dt + \sum_{i=1}^N \sum_{j=1}^N  \int_{t_1}^{t_2} \bm{F}_{ij}^{in} \cdot \dfrac{d\bm{r}_i}{dt} dt $
$\displaystyle \hspace{2.5cm} = \sum_{i=1}^N W_i^{ex}(t_1 \rightarrow t_2) + \sum_{i=1}^N \sum_{j=1}^N W_{ij}^{in}(t_1 \rightarrow t_2)$
$\displaystyle \hspace{2.5cm} = W^{ex}(t_1 \rightarrow t_2) + W^{in}(t_1 \rightarrow t_2)  $
$ \displaystyle T_G(t_2)-T_G(t_1)  = \int_{t_1}^{t2}\bm{F}^{ex}\cdot \dfrac{d \bm{r}_G}{dt} dt = \overline{W}_G(t_1 \rightarrow t_2) $
$ \displaystyle \tilde{T}(t_2)-\tilde{T}(t_1) = W^{ex}(t_1 \rightarrow t_2) - \overline{W}_G(t_1 \rightarrow t_2) + W^{in}(t_1 \rightarrow t_2)$ 

ここで,$\overline{W}_G^{ex} =  \sum_{i=1}^N \sum_{j=1}^N \dfrac{m_i}{M} \bm{F}_{j}^{ex} \cdot \dfrac{d\bm{r}_i}{dt} dt$ は外力に由来しているが,各要素に分解してみると仕事の形はしておらず(作用する外力と座標の番号は等しくない$\ i \neq j\ $の$\ \bm{F}_{j}^{ex} \cdot d\bm{r}_i\ $が含まれる),このため擬仕事(pseudo work)とよばれることがある。

これらの式を今の問題に当てはめるとどうなるか。束縛力(外力)の和は,重心に対して仕事$\overline{W}_G^{ex}$をする。しかし,束縛力(外力)によって各粒子がなされる仕事の和$W^{ex}$は0である。重心の運動エネルギーの増加に寄与するのは,$W^{ex}$ではなく,$\overline{W}_G^{ex}$であり,これは必ずしもゼロにならないのだ。$\overline{W}_G^{ex} =\dfrac{1}{2} \Bigl( \int  \bm{F}_1^{ex}\cdot d\bm{r}_2 + \int \bm{F}_2^{ex}\cdot d\bm{r}_1 \Bigr)$

問題の設定では,束縛条件から,外力(束縛力)と内力(弾性力)の間に条件式が課されるため,外力を内力によって表すことができる。これによって,擬仕事を内力の仕事の形で表せるのだが,一般的には重心の運動エネルギーの増加を各粒子に対する内力による仕事だけで表すことはできない。

2024年1月23日火曜日

藤岡作太郎

就寝中にトイレに行きたくなるとき,眠りが浅くなって夢を見る。いや,半分覚醒してまどろんでいる状態なので夢ではないのかもしれない。こうした夢と覚醒がシュレーディンガーの猫のようになって区別しにくい時間がしばしば訪れる。

昨晩のその時間は,「鈴木大拙」についての説明を誰かに一生懸命しようとしていた。ただ,名前が思い出せないのである。えーっと,金沢出身で,西田幾多郎と友達で,いるでしょう,禅の研究で(善の研究ではない)海外に名を馳せた,誰だったか,ほらあの(静かな水面のある落ち着いた記念館のイメージを想起しつつ),えーっと,三太郎とよばれていたから,本名は○太郎のはずだけれど,それではわからないし・・・

そうこうしているうちに目が覚めてトイレに行ったが名前の記憶はオフのまま。再び布団に潜ってもまだ思い出せない。そのまま眠りに入ると,明け方近くの夢の中でようやく思い出すことができた。あ,鈴木大拙だ!朝起きても思い出した量子状態は崩壊することなく維持されていた。


三太郎というのは誰だったろうかと,Wikipediaで鈴木大拙=貞太郎(1870-1966)を調べてみると「同郷の西田幾多郎(1870-1945)、藤岡作太郎(1870-1910)とは石川県専門学校( 1881- 第四高等中学校 1887-)以来の友人であり、鈴木、西田、藤岡の三人は加賀の三太郎と称された」とあった。

藤岡作太郎はどんな人かとさらに調べると,日本で最初の文学博士,国文学(国文学全史平安朝篇)の人だった。その長男が物理学者で物理教育学会の会長も務めた藤岡由夫(1903-1976),孫がレーザ工学の藤岡知夫(1935-2022),ひ孫がテレビでおなじみの指揮者の藤岡幸夫(1962-)だった。

藤岡作太郎の長女の綾が,長男の藤岡由夫の友人の中谷宇吉郎(1900-1962)と結婚しているが若くして亡くなっている。孫の藤岡知夫の妻は原子物理学の菊池正士(1902-1974)の長女であり,これをたどると箕作家(みつくりけ)を通じて初代阪大総長の長岡半太郎(1865-1950)までつながる。なお,長岡半太郎と本多光太郎(1870-1954)と鈴木梅太郎(1874-1943)は理研の三太郎だ。

2024年1月19日金曜日

トリチウム(3)

トリチウム(2)からの続き

非常勤で担当している物理科学概説の授業も,後3回を残すばかりになった。最後の授業日の準備をしているが,テーマは原康夫さんの教科書である第5版 物理学基礎の第25章「原子核と素粒子」だ。

トリチウムのベータ崩壊で話を終らそうと思ったら,宇宙線と上層大気の衝突によって年間に生成されるトリチウム量のところでつまづいてしまった。茨城大学の鳥養さんの資料では,年間72 PBq/y(PBq=ベタベクレル=10^15ベクレル)生成されるとなっている。

そもそも,ベクレルは単位時間当たりの崩壊数なので時間の逆数になっている。これをさらに時間で割った量が生成量であるというのはどういうことかと,かつて理解していたところで再度引っかかってしまった。

70歳を過ぎるとこんなことが増えていくのだろう。一日中家の中で失せ物を探している時間がどんどん増加していくのと同様に,頭の中の失せ物を探す時間が増えていくのだ。こんなときに,生成AIが頼りになれば有難いのだけれど,これが現時点ではあまりあてにはならない。

さて,時間$\Delta t$の間に崩壊する原子核の数は,$\Delta N = \lambda N \Delta t$である。$\lambda = \frac{0.693}{T_{1/2}}$は崩壊定数であり,時間の逆数の次元を持っている。それは不安定な原子が崩壊する確率を表している。言い換えれば,放射性同位元素の物質量$N$に$\lambda$を掛けたものがその物質のベクレル数に等しいことから,放射性同位元素の物質量を,単位が異なるベクレル数で表現しても差し支えないだろうという考えだ。

あるいは,本質的に時間とともに変化する存在である放射性同位元素の量を表現するのに,時間的に不変な状態を想定しているモルやkgで表すのは適当ではなく,むしろその時点でのベクレル数で表わした上で,今後はこの割合で減少していくということに注意を喚起するという習慣があると善意に理解しよう。

まあ,トリチウムが放射平衡している場合は,時間とともに変化しないけれども,いつ何時,核施設の事故があるかもしれない。

さて,2000年のUNSCEARの資料[1] に,Table 4 Production rates and concentrations of cosmogenic radionuclides in the atmosphereという表がある。これによると,宇宙線によるトリチウムの単位面積,単位時間当たりの生成数は,$ 2500 /({\rm m^2 s}) $ であり,地球表面積,$ 5.1 \times 10^{14} {\rm m^2} $との積から,1秒間に,$\mu = 1.28 \times10^{18} $個/sのトリチウム原子が生成される。1年間($y =3.15 \times 10^{7} {\rm s} $)では $\mu y = 4.0 \times 10^{25}$個となる。一方,トリチウムの崩壊定数は,$\lambda = 0.693/ ( 12.3 × 3.15 × 10^7) /{\rm s} $ なので,$\mu y \lambda $によってベクレルに換算すれば,$72 \times 10^{15} {\rm Bq}$が得られる。

また,この自然の機構によって地球上に存在するトリチウムの総量$N(t)$は,次の微分方程式$\frac{dN(t)}{dt}=-\lambda N(t) + \mu $の平衡解 $N(\infty)$で与えられ,$N(\infty) = \frac{\mu}{\lambda} = 7.2 \times 10^{26}$個= $1.28 \times 10^{18}$Bqである。

これを使って,大気中の平均トリチウム濃度を計算してみる。資料[1]では対流圏の体積が,$3.62 \times 10^{18} {\rm m^3}$と与えられ,$0.35 {\rm Bq / m^3}$となる。ところが資料[1]では,$1.4 {\rm mBq / m^3}$となっていて,何だか250倍大きくなってしまうのだ。なんで?

あら,表にはfractional amount in atomosphereというのがあって,その係数が1/250=0.004になっていた。トリチウムはほとんどHTOの形態で存在しているので,ほとんどが雨水/海水に溶けてしまうということなのかもしれない。

図:トリチウムの概念図(東京電力から引用

[2]環境トリチウムについて(鳥養祐二)
[3]トリチウムの環境動態(百島則幸)
[4]大気中トリチウム濃度の変遷と化学形態別測定(宇田達彦・田中将裕)


2024年1月18日木曜日

コンストラクタ理論

コンストラクタ理論というものがあることを知った。知るには段階があるのだけれど,これは名前とボンヤリした意味がわかるという第1段階。自分の頭の中で「知っている」というのはだいたいこれにあたる。

対象が,具体的な事物なのか,抽象的な事柄なのかによっても話が違ってくる。例えば,有馬温泉知ってますかという問いに対して,(1) 名前を聞いたこともない,(2) 名前は聞いたことがある,(3) その属性(場所・由来)なども知っている,(4) 写真や動画での紹介を見た,(5) 現地を訪問したことがある,(6) 宿泊して観光したことがある,(7) ある程度の期間滞在して暮らしていた,(8) 長い間にわたって現地で生活していた。などなど。

今では,(1)-(4) は簡単に実現できる。仮想空間技術が進歩すれば,(5) や場合によっては(6) あたりまでは手が届くようになるのかもしれない。視聴覚以外の体験はまだ難しい。食べ物について同様に自分が知っているかどうかという問題を考えると,あるものを食べるという体験と結びついた記憶の話や,文化的な多様性のなかで様々な派生物の範囲をどこまで理解してそのなかで位置づけることができているかなど,さらに話が複雑になってくる。

ある事柄に関するプロフェッショナルというのは,結局どれだけの具体的な体験を積み重ねてきてそれらをネットワークする知恵を発達させているのかということに帰着するような気がする。

そんなわけで,このブログのように浅く(広くもない,人間の興味はかなり限定される)知った気分になっているというのに,どれほどの意味があるのかということを改めて反省する。

話が,全然進まない。コンストラクタ理論の件である。受け売りの要約では次のようになる。生成AIや翻訳ツールがあるので,十分な読解を経なくてもわかったようなまとめができてしまう。それはそれで問題なのだ。抽象的な事柄の意味を知っているかどうかというのは,多次元空間の連続的なスペクトルのどこに位置するかみたいな面倒な話にはなりそうだ。
コンストラクター理論とは、物理学における基本法則を定式化する新しいアプローチである。世界を軌道、初期条件、力学的法則で記述する代わりに、構成理論では、どのような物理的変換が可能で、どのような変換が不可能か、そしてその理由についての法則を記述する。この強力な転換は、現在は本質的に近似的とみなされているあらゆる興味深い分野を基礎物理学に取り込む可能性を秘めている。例えば、情報、知識、熱力学、生命の理論などである。

量子計算理論の創始者の一人であるデイヴィッド・ドイッチュ(1953-)が2012年に提案し,キアラ・マレットとともにオックスフォード大学で展開している理論である。

[1]Constructor Theory (D. Deutsch, 2012)
[2]Constructor Theory of Information (D. Deutsch, C. Marletto, 2014)
[3]Constructor Theory of Life (C. Marletto, 2014)
[4]Constructor Theory of Probability (C. Marletto, 2015)

2023年12月7日木曜日

アンペールの法則(2)

アンペールの法則(1)からの続き

前回の一般的な結果を得るまでにあれこれ考えた。普通はアンペールの法則の単純な形態,つまり直線電流のまわりの円周上の磁束密度に対する,$2 \pi r B(r) = \mu_0 I$から出発して一般化するのかと思った。しかし,そもそも簡単なアンペールの法則とは直線電流まわりの磁束密度ベクトル場を与えるもので,答えは既に出ていたのだった。

あれこれの過程での計算は,結局,線積分の練習問題だった。


図:アンペールの法則の線積分経路

方針:磁束密度を測定する点への位置ベクトル$\bm{r}$とその軌跡として経路$C=r(\theta)$を考える。線要素$d\bm{r}$を変数,$r,\theta$であらわし,さらに経路条件から$r$を消去して,線積分要素を$\theta$の関数として表す。磁束密度は$r$の関数なので,これも$\theta$の関数とみることができる。その結果,線積分要素$dB=\bm{B}\cdot d\bm{r}$は$\theta$の関数になって,角度積分を実行することができる。

領域Ⅰ(左図の$0 \le \theta \le \pi/4$):$r=a/\cos\theta$,$dy = a d\theta / \cos^2 \theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{\cos^2\theta}{a} \frac{a}{\cos^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅱ(左図の$\pi/4 \le \theta \le \pi/2$):$r=a/\sin\theta$,$dx = -a d\theta / \sin^2 \theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{-\sin^2\theta}{a} \frac{-a}{\sin^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅲ(左図の$\pi/2 \le \theta \le \pi$):$r=a/(\cos\theta - \sin\theta)$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{\sin\theta - \cos\theta}{a} \frac{a}{\sin \theta - \cos \theta} d\theta$,$B=\frac{\mu_0 I}{4}$
領域Ⅵ(左図の$\pi \le \theta \le 2\pi$):$r=a$,$d\bm{r} = a (-\sin\theta , \cos \theta) d\theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{1}{a} a d\theta$,$B=\frac{\mu_0 I}{2}$
領域Ⅴ(右図の$-\pi \le \theta \le \pi$):$r=\sqrt{a^2+d^2+2 a d \cos\theta}$,$d\bm{r} = a(-\sin\theta, \cos\theta) d\theta$
  $\displaystyle dB = \dfrac{\mu_0 I}{2 \pi}\int_{-\pi}^{\pi}\dfrac{a(a+d\cos\theta)}{a^2+d^2+2 a d \cos\theta}d\theta = \dfrac{\mu_0 I a}{2 \pi} \int_{-\infty}^{\infty} \dfrac{(a+d)+(a-d) t^2}{(a+d)^2+(a-d)^2 t^2}\dfrac{2 dt}{1+t^2}$
$\displaystyle = \dfrac{\mu_0 I a}{2 \pi a} \int_{-\infty}^{\infty}  \Bigl\{ \dfrac{1}{1+t^2} +\dfrac{(a-d)(a+d)}{(a+d)^2+(a-d)^2 t^2} \Bigr\} dt = \dfrac{\mu_0 I}{2\pi} (\pi + \pi) = \mu_0 I$


2023年12月6日水曜日

アンペールの法則(1)

物理科学概説の授業で,アンペールの法則のところに入った。積分形では,$\displaystyle \oint_C \bm{B}(\bm{r})\cdot d\bm{r}=\mu_0 I$である。

十分長くてまっすぐの導線を流れる電流のまわりの磁束密度$\bm{B}(\rm{r})$の強さ$B(r)$は,電流の強さ$I$に比例し,電流からの距離$r$に反比例する。その向きは電流の向きに右ネジが進むときにネジが回る方向(電流を中心とした半径$r$の円の接線方向)である。

この実験事実を式で表現する。直線電流上の一点を原点に取って,磁束密度ベクトルは原点をとおり電流に垂直な平面内にある。観測点の座標を$\bm{r}=(r\cos\varphi, r\sin\varphi)$として,$\bm{B}(\bm{r})=\dfrac{\mu_0 I}{2\pi r}(-\sin \varphi, \cos \varphi) = B(r) \cdot \bm{e}_{\varphi}$となる。このとき,$\bm{B}(\bm{r})\cdot \bm{r}=0$となっている。

このとき,積分形のアンペールの法則を導けるかという問題だ。


図:アンペールの法則の積分形の導出

積分形のアンペールの法則では,空間中に任意の閉経路Cを設定して,この経路Cに対する磁束密度の線積分を求める。線積分要素は$dB = \bm{B}(\bm{r})\cdot d\bm{r}= B(r) dr \cos\theta$となる。一方,線要素の磁束密度方向の成分は,$dr \cos \theta = r d\varphi$である。そこで,$dB = B(r) r d\varphi = \dfrac{\mu_0 I}{2 \pi} d\varphi$となる。$\therefore \oint_C \bm{B}(\bm{r})\cdot d\bm{r} = \int_0^{2\pi}  \dfrac{\mu_0 I}{2 \pi} d\varphi = \mu_0 I$

したがって,無限直線電流に対して,3次元空間内でこれを囲む任意の閉経路での磁束密度の線積分の値は,この経路を貫く電流に磁気定数をかけたものとなる。


2023年12月3日日曜日

球形キャパシタ

球形キャパシタの問題を物理科学概説の中間テストで出題した。

教科書の例題と同じ単純な問題のつもりだったけれど,2つの球殻に与える電荷の記述を省略したため,アースの取り方によって話が変わるのだった。それが教科書の章末課題に書いてあったので,良く勉強した学生さんはそちらを参照していた。


図:球形キャパシタのイメージ

半径$a$と$b$の同心の導体球殻があり,それぞれに電荷$q_a$と$q_b$を与えたとき,それぞれの電位が$V(a)$と$V(b)$になったとする。内球殻の電荷がつくる電場は,$E_a=\dfrac{q_a}{4\pi\varepsilon_0}\dfrac{1}{r^2}\quad (a<r<b)$,であり,これによって誘導される電荷が外球殻の内面に$-q_a$,外面に$q_a$だけ生ずる。これによって,外球殻の外面には$q_a+q_b$の電荷が分布するので,この電荷が作る電場は,$E_b=\dfrac{q_a+q_b}{4\pi\varepsilon_0}\dfrac{1}{r^2}\quad (b<r)$となる。

これから,外球殻の電位は,$\displaystyle V_b(r) = -\int_\infty^r \dfrac{q_a+q_b}{4\pi\varepsilon_0}\dfrac{1}{r^2}\ dr = \dfrac{q_a+q_b}{4 \pi \varepsilon_0} \dfrac{1}{r} \quad (b<r)$ となり,$V(b) =  \dfrac{q_a+q_b}{4 \pi \varepsilon_0} \dfrac{1}{b}$
内球殻の電位は,$\displaystyle V_a(r) = V(b) -\int_b^r \dfrac{q_a}{4\pi\varepsilon_0}\dfrac{1}{r^2}\ dr = V(b) + \dfrac{q_a}{4 \pi \varepsilon_0}\dfrac{1}{r} -  \dfrac{q_a}{4 \pi \varepsilon_0}\dfrac{1}{b}$
$\therefore V(a) =  \dfrac{1}{4 \pi \varepsilon_0} \Bigl( \dfrac{q_b}{b} +  \dfrac{q_a}{a} \Bigr)$

(1) 外球殻が接地されている場合
$V(b)=0$より$q_b = -q_a$となる。$\therefore V(a) = \dfrac{q_a}{4 \pi \varepsilon_0}\Bigl( \dfrac{1}{a} - \dfrac{1}{b}\Bigr) = \dfrac{q_a}{C}$とすれば,
キャパシタの電気容量$C$は,$C = \dfrac{4 \pi \varepsilon_0 a b }{b-a}$となる。

(2) 内球殻が接地されている場合
$V(a)=0$より$q_a = -\dfrac{a}{b} q_b$となる。$\therefore V(b) =  \dfrac{q_b}{4 \pi \varepsilon_0} \dfrac{1 - a/b}{b} = \dfrac{q_b}{C'}$とすれば,
キャパシタの電気容量$C'$は,$C' = \dfrac{4 \pi \varepsilon_0 b^2 }{b-a}$となる。

このとき,$C' = C +  4 \pi \varepsilon_0 b$となって,外球殻をキャパシタと考えたときの電気容量とCとの並列接続の式となっている。

2023年12月2日土曜日

円軌道はむずかしい

万里鏡1号弾道ミサイルの軌道(2)からの続き

北朝鮮の弾道ミサイルの簡単なシミュレーションコードをMathematicaで作っていた。これを少しアレンジすれば人工衛星を軌道に投入するところまでできそうな気がする。

早速,以前のコードを修正してみた。まずは通常の加速直後に角度方向だけに加速度を加えるようにしたがうまくいなかい。打ち上げ加速は投射角の方向になっているので,動径速度成分が大きく残っているうえ,加速すれば軌道は膨らむ。このため,離心率の大きな長円軌道になって地表にぶつかってしまうか,地球の重力圏から脱出してしまうのだ。

次に,打ち上げ加速の直後に空白時間をおいて,動径速度成分が小さくなったところで角度方向に加速できるようにした。それでもうまくいかない。簡単な試行錯誤では周回軌道にのせるのが難しい。そもそも角度方向に加速するということは面積速度すなわち角運動量をふやし,動径方向の微分方程式で軌道半径を膨らませる方向に作用してしまう。

そこで,後期加速では衛星をその速度ベクトルの方向に加速することにした。$t=0$で速度ベクトルをとりだすところに発散があったので,これを回避するため,地球の自転による2倍面積速度$h(t)$の初期値として,$h(0) = R^2\omega=R^2 \frac{2\pi}{24*3600}=2930$ km$^2/$sを与えた。初期加速度はこれまでの$\ a=0.0446$として$30$秒加速する。その後,800秒程度休止した後に,後期加速度$\ b=0.1445$(ここを微調整した)で$250$秒加速すると,なんとか軌道に投入することができた。投射角は$s=45$度,初期加速における燃料比は$p=0.85$であり,加速方向の角度には$0.3$をかけて動径成分を抑えた。

なかなか難易度の高いゲームである。衛星の軌道高度が1200km程度の準円軌道となっている。これを500kmにしなさいといわれても,こんな単純な2段階制御ではちょっと難しい。なお,プログラムの検証のため,$r=6850$kmの宇宙空間で第一宇宙速度に相当する$v=\sqrt{gr}=8.2$ km/sを角度方向の初速度として与えると,正確に円軌道を描くことが確かめられた。

g = 0.0098; R = 6350; τ = 30; τs = τ*27; τt = 250; p = 0.85;
 a = 0.0446; b = 0.1445 a; s = 45 Degree; T = 15400; 
fs[t_] := 0.3*ArcTan[r[t]*r'[t]/ h[t]]
fr[t_, τ_] :=  a*Sin[s]*HeavisideTheta[τ - t] + 
   b*Sin[fs[t]]*HeavisideTheta[t-τs-τ]
   *HeavisideTheta[τ+τs+τt-t]
ft[t_, τ_] :=  a*Cos[s]*r[t]*HeavisideTheta[τ - t] + 
   b*Cos[fs[t]]*r[t]*HeavisideTheta[t-τs-τ]
   * HeavisideTheta[τ+τs+τt-t]
fm[t_, τ_] := -p/(τ - p*t)*HeavisideTheta[τ - t]
sol = NDSolve[{r''[t] == -fm[t, τ]*r'[t] 
   +h[t]^2/r[t]^3 -g R^2/r[t]^2 +fr[t, τ],
   r[0] == R, r'[0] == 0, 
   h'[t] == -fm[t, τ]*h[t] + ft[t, τ], 
   h[0] == 2930 + 0*Sqrt[g] R^(3/2)}, {r, h}, {t, 0, T}]
f[t_] := r[t] /. sol[[1, 1]]
d[t_] := h[t] /. sol[[1, 2]]
Plot[{6350, f[t]}, {t, 0, T}]
Plot[{f[t + 1] - f[t], d[t]*R/f[t]^2, d[t]/f[t]},
 {t, 0, T}, PlotRange -> {-5, 15}]

 


図:苦労すると有難みがわかる衛星の準円軌道のグラフ

P. S. もう少しがんばると,軌道高度650km(r=6980km)の準円軌道まで達成できた。
g = 0.0098; R = 6350; τ = 25; τs = τ*15.3; τt = 350;  p = 0.85;
a = 0.0446; b = 0.1275 a; s = 45 Degree; T = 15400; 

2023年11月25日土曜日

アマテラス粒子

観測史上2番目にエネルギーの高い宇宙線が見つかったというニュース。11月24日のサイエンスオンラインに論文が掲載されるはずだけれど,まだ見当たらない。

実験史上最大というプレスリリースになっているのは,米国ユタ州のテレスコープアレイ実験(2008-,760㎢に1.2km間隔で507台の大気チェレンコフカウンターを並べた装置)においてという意味だ。これまでに観測された史上最大エネルギーの宇宙線は,同じユタ州のダグウェイ実験場で1991年に見つかった,オーマイゴッド粒子だ。そのエネルギーは,3.2±0.9 × 10^20 eV = 320 EeV(エクサ電子ボルト)= 51 J(ジュール)である。

今回,大阪公立大学や東京大学宇宙線研究所などのメンバーを含む国際共同実験チームが見つけた宇宙線は,アマテラス粒子と命名され,そのエネルギーは 244 EeV = 38 J である。これがマスコミに報道されるとき,40Wの電球を1秒点灯させるだけのエネルギーというのはOKだけれど,1gで地球を破壊するほどのエネルギーだという例えに引っかかった。

この宇宙線の正体となる粒子が何であるか(粒子1個の質量)がわからなければ,1gに相当する粒子数が定まらない。とりあえず,銀河宇宙線の大半を占める陽子だとすると,質量は,1.67 × 10^-27 kg なので,6 × 10^23 個分にあたる。1g 分のアマテラス粒子群全体の持つエネルギーは,2.4 × 10^25 J なのだけれど,これで地球は破壊できるのだろうか。

広島に投下されたリトルボーイのエネルギーは,7 × 10^16 J らしいので,3億個の広島型原爆を落とされたことになる。また,チクシュルーブ・クレーターを作って恐竜を絶滅させたといわれる直径10km,速度20km/sの小惑星は,リトルボーイの1億倍のエネルギーに相当するので,この小惑星衝突の3個分のエネルギーに相当する。この表現のほうがわかりやすかっただろうか?

宇宙線研究所のプレスリリースには共同実験代表者の荻尾彰一さんの写真が大きく載っていた。彼は,大阪市立大学時代には物理教育学会近畿支部長を務められ,いろいろとお世話になったのだった。


図:大阪公立大学のプレスリリースから引用(©Ryuunosuke Takeshige)


2023年11月24日金曜日

ケプラー方程式

楕円軌道からの続き

軌道の形ではなく,時間発展を考える。
出発点は,$\bm{r}(t) = (x(t),y(t)) = ( a(\cos\theta(t) -e), a\sqrt{1-e^2} \sin \theta(t))$と,面積速度が一定であるということだ。
長半径$a$,短半径$b$,離心率$e$の 楕円の面積$S$は $S=\pi a b = \pi a^2 \sqrt{1-e^2}$なので,周期を$T$とすると,面積速度は,$\dfrac{dS}{dt}= \dfrac{S}{T} = \dfrac{\pi a^2 \sqrt{1-e^2}}{T}$である。

次に,楕円上の位置ベクトル$\bm{r}(t)$から面積速度を計算する。
$\dfrac{dS}{dt}= \frac{1}{2}(\bm{r} \times \dot{\bm{r}})_z = \frac{1}{2}(x \dot{y} - \dot{x} y) $
$= \frac{1}{2}  \{ a(\cos\theta-e) \cdot a\sqrt{1-e^2} \cos\theta \dot{\theta} - (-a \sin \theta \dot{\theta} ) \cdot a\sqrt{1-e^2}\sin \theta \}$
$= \dfrac{a^2 \dot{\theta}\sqrt{1-e^2}}{2} (\cos^2 \theta -e \cos\theta + \sin^2 \theta) =  \dfrac{a^2 \dot{\theta}\sqrt{1-e^2}}{2} (1 -e \cos\theta ) $

この2つの式が等しいので,$\dfrac{2\pi}{T} = \dot{\theta} ( 1- e \cos\theta)$となる。この両辺を時間$t$で積分して,$t=0$で$\theta=0$とすれば,次のケプラー方程式が得られる。
$\dfrac{2\pi}{T} t = \theta -\sin \theta \quad ( 0 \le t \le T \ \ \rightarrow\ \  0 \le \theta \le 2\pi) $
この解$\theta(t)$ を$\bm{r}(t) = (x(t),y(t)) = ( a(\cos\theta(t) -e), a\sqrt{1-e^2} \sin \theta(t))$に代入すれば,位置ベクトルが時間の関数として表される。

Mathematicaで計算してみた。
f[t_, e_] := FindRoot[u - e Sin[u] == 2 Pi t, {u, 0}]
g1[a_, e_] := 
  Table[{a (Cos[u] - e), a Sqrt[1 - e^2] Sin[u]} /. f[k/52., e], {k, 1, 52}];
gp1 = Graphics[{PointSize -> Large, Red, Point[g1[1, 0.2]]}];
g2[a_, e_] := 
 Plot[{a Sqrt[1 - e^2] Sqrt[1 - (x/a + e)^2], -a Sqrt[1 - e^2] Sqrt[
     1 - (x/a + e)^2]}, {x, -a (1 + e), a (1 - e)}, 
  AspectRatio -> Automatic, PlotStyle -> Blue]
gp2 = g2[1, 0.2];
Show[gp2, gp1]

図:ケプラー軌道の計算例(a=1, b=0.98,  e=0.2, r_ap=1.2, r_pe=0.8)

2023年11月23日木曜日

楕円軌道

昼夜時間(3)からの続き

惑星の楕円軌道についての復習の時間。


図:楕円の性質

図の左が,楕円の中心を原点とする$\ (X-Y)$座標系の表示である。長半径$a$の円を短半径$b$方向に$b/a$倍すると,$(X/a)^2+(Y/b)^2=1$という楕円が描かれる。このとき,縮小前の点への位置ベクトルが$X$軸となす角度を$\theta$として,楕円上の点の座標が$\ (X=a \cos \theta, Y= b \sin \theta)\ $となる。また,原点から種横転までの距離は$\ \sqrt{a^2-b^2}=ae$となる。ただし,離心率が$\ e=\sqrt{1-(b/a)^2}$と定義される。

図の右が,楕円の焦点を中心とする$\ (x-y)$座標系での表示である。原点から最も近い$x$軸方向の近地点までの距離を$r_{\rm pe}=a(1-e)$,最も遠い遠地点までの距離を$r_{\rm ap}=a(1+e)$とすると,$a=(r_{\rm ap}+r_{\rm pe})/2,\ b=\sqrt{r_{\rm ap} r_{\rm pe}}$である。また,楕円上の点への位置ベクトルは,その長さを$r$,$x$軸のなす角度を$\phi$として,$(x=r\cos\phi, y=r\sin\phi)$と表される。

ところで,$x = a \cos \theta - a e = r\cos\phi,\ y = b \sin \theta = r\sin\phi)$である。そこでこれらから,$\theta$を消去すれば,$r$と$\phi$の関係式が得られる。すなわち,$r=\sqrt{x^2+y^2} = a (1-e\cos\theta)$,$\tan \phi = \dfrac{y}{x} = \dfrac{\sqrt{1-e^2} \sin \theta}{\cos \theta - e}$
そこで,$\dfrac{1}{\cos^2\phi} = 1 + \tan^2\phi = \dfrac{(\cos \theta - e)^2 + (1-e^2)\sin^2 \theta}{(\cos \theta - e)^2}=\dfrac{(1-e\cos\theta)^2}{(\cos \theta - e)^2}$
$\therefore \dfrac{1}{\cos\phi} = \dfrac{1-e\cos\theta}{\cos \theta - e} =  \dfrac{r}{a\cos \theta - a e} =  \dfrac{r e}{a - r - a e^2} $
最終的に,$r = \dfrac{a(1-e^2)}{1 + e \cos \phi}$となる。




2023年11月20日月曜日

チェレンコフ放射(2)

チェレンコフ放射(1)からの続き

チェレンコフ放射の理論的取り扱いは,JacksonのClassical Electrodynamicsをみればよいらしいけれど,それは宿題ということで・・・。

ここでは,原子炉から核燃料から放出される典型的なβ崩壊の高エネルギー電子の速度を求めてみる。キセノン133,ヨウ素131,セシウム137などでは,ベータ線の運動エネルギーは0.5MeVから1MeV程度である。この電子の速度が 媒質中の光速度 $c'=c/n$ を超えるかどうかが知りたい。つまり$T$求めた $v/c$が,$1/n$を超えれば,チェレンコフ光が観測される。ただし,$n$は媒質(水)の屈折率である。

電子の静止エネルギーを$mc^2$,電子の相対論的な全エネルギーを$E=\dfrac{mc^2}{\sqrt{1-(v/c)^2}}$,相対論的な運動エネルギーを$T=E-mc^2$とおく。これから$\ v/c\ $を$T$の関数として表せばよい。
$(T + mc^2)^2=\dfrac{(mc^2)^2}{1-(v/c)^2}$であるから,$1-(v/c)^2 = \dfrac{1}{(T/mc^2 + 1)^2}$
$\therefore (v/c)^2 = 1 - \dfrac{1}{(T/mc^2 + 1)^2} = \dfrac{(T/mc^2)^2 + 2(T/mc^2)}{(T/mc^2 + 1)^2}$

$\therefore v/c = \dfrac{\sqrt{T^2 + 2mc^2 T\ \ }}{T+mc^2} = \dfrac{\sqrt{\tau^2 + 2\tau\ \ }}{\tau + 1}$

ここで,$\tau=T/mc^2$である。例えば,$\tau=\{0.5, 1, 2\}$に対して,$v/c=\{0.74,\ 0.86,\ 094\}$なので,水の屈折率の逆数$1/n= 1/1.33 = 0.75$ をほぼ超えることがわかる。


写真:チェレンコフ放射の例(Wikipediaから引用)


2023年11月19日日曜日

チェレンコフ放射(1)

チェレンコフ放射は知っている。

屈折率が,$n=\sqrt{\varepsilon_r \mu_r} > 1\ $である媒質中の光速度は,$c' = c/n$と真空中より遅くなる。ここで,$\varepsilon_r,  \mu_r\ $は無次元の比誘電率と比透磁率である。この媒質中を進む荷電粒子が媒質中の光速度を超える場合,波面の作る包絡線に垂直な方向に生ずるのがチェレンコフ光である。典型的な例は水に浸かった原子炉中の核燃料が出す放射線から生ずる青白い光である。

ところで,荷電粒子が電磁波を放出するのはそれが加速度運動している場合である。上記の放射線(高エネルギーのベータ線)は媒質の水の中を等速度で運動している。

砂川さんの理論電磁気学によれば,点電荷の座標を$\bm{r}(t_0')$,観測点の座標を$\bm{x}$,粒子の位置から観測点に向かう単位ベクトルを$\bm{n}(t_0')=\dfrac{\bm{x}-\bm{r}(t_0')}{|\bm{x}-\bm{r}(t_0')|} = \dfrac{\bm{x}-\bm{r}(t_0')}{R(t_0')}$とする。
さらに次の量$\ \bm{\beta}(t_0') = \bm{\dot{r}}(t_0')/c\ $と$\ \alpha(t_0')=1-\bm{n}(t_0')\cdot \bm{\beta}(t_0')\ $を定義した。
ただし,$t_0'\ $は$\ t_0'=t -|\bm{x}-\bm{r}(t_0')|/c \ $の解であり,$t_0'$のなかに$\bm{x}$が含まれる。

スカラーポテンシャル$\phi(\bm{x},t)$とベクトルポテンシャル$\bm{A}(\bm{x},t)$は,次式で与えられる。
$\phi(\bm{x},t)=\dfrac{e}{4\pi\varepsilon_0}\dfrac{1}{\alpha(t_0') R(t_0')}$
$\bm{A}(\bm{x},t)=\dfrac{\mu_0 e}{4\pi}\dfrac{\bm{\dot{r}}(t_0')}{\alpha(t_0') R(t_0')}$
また,電場$\bm{E}(\bm{x},t)$と磁場$\bm{B}(\bm{x},t)=\dfrac{1}{c}\bm{n}(t_0')\times \bm{E}(\bm{x},t))$は,
$\bm{E}(\bm{x},t)= \dfrac{e}{4\pi\varepsilon_0}\Biggl[ \dfrac{(\bm{n}-\bm{\beta})(1-\bm{\beta}^2)}{\alpha^3 R^2}+\dfrac{(\bm{n}-\bm{\beta}) (\bm{n}\cdot \bm{\dot{\beta}}) - \alpha \bm{\dot{\beta}}  \} }{c\alpha^3 R} \Biggl]_{t_0'}$
$\bm{B}(\bm{x},t)= \dfrac{\mu_0 e}{4\pi\varepsilon_0}\Biggl[ \dfrac{(\bm{\beta}\times \bm{n})(1-\bm{\beta}^2)}{\alpha^3 R^2}+\dfrac{ (\bm{\beta}\times \bm{n})(\bm{n}\cdot \bm{\dot{\beta}}) + \alpha \bm{\dot{\beta}} \times \bm{n} \} }{c\alpha^3 R} \Biggl]_{t_0'}$

加速運動する荷電粒子から生ずる電磁波は$\bm{\dot{\beta}}$の項からくる。これを含まない項は,遠方で$R^{-2}$で減衰するのでエネルギーの放射には関係しない。一方,媒質中で光速を超える場合は,$\bm{\dot{\beta}}=0$ではあるが,同時に$\alpha=0$になる可能性がある。そこでこの項が消えずに残るというのが,ものの資料[1]の説明だったが,イマイチよくわからない。フーリエスペクトル以降の計算を追えていない。

結局,チェレンコフ放射についても自分はよくわかっていなかった。まあそんなものだ。

図:チェレンコフ放射のイメージ(github-nakashoから引用)





2023年11月3日金曜日

鏡像法(7)

鏡像法(6)からの続き

昔お世話になった共立出版の詳解電磁気学演習(後藤憲一,山崎修一郎)では,第4章 静電界Ⅵ:静電界の特殊解法 §1.電気映像として,25ページに渡ってこれでもかというほど鏡像法の演習問題がとりあげられている。しかし,非常に技巧的で工学的な応用問題に見えてほとんど無視してきた。

この度,少しだけ復習してみて,なかなか奥深いものがあった。基本要素として,単純な導体境界面である平面,円筒面,球面をとり,電荷源として点電荷と直線電荷を組み合わせると六通りの可能性がある。そのうち4つは典型的な例題として教科書にも演習書にもよく取り上げられているが,円筒面×点電荷,球面×直線電荷はあまり見たことがないし,少し考えてみたけれど簡単に解けそうではなかった。


図:電荷源と対称な導体面の例

直線電荷と球面の場合は,直線電荷を点電荷の集まりとすれば,球の中心Oに最も近い直線電荷上の点Aに対する球内の鏡像点Bを考え,直線電荷と球の中心を含む平面において,OBを直径とする円が鏡像点の集合になる。ただし,円上の線電荷密度はこの円内で変化するとすれば,一応辻褄が合いそうだけれど,どうなのだろう。

点電荷と円筒面の場合は,そもそも鏡像電荷を幾何学的な対称として特定できるのかどうかもはっきりしない。下手に直線電荷を導入すると自然対数の静電ポテンシャルがでてきて,点電荷の静電ポテンシャルとは極めて相性が悪そうなのだ。現実問題としては導体直線とこれから離れた点に一定の電荷がある場合は考えられなくはないので,ちゃんと探せば答えがあるのかもしれない。

そんなわけで,いろいろ格闘した結果,導体面は等電位面であり,電場は導体面に垂直な方向を向いているが,その大きさは導体面上で一定ではなく,導体面の電荷密度に比例した大きさを持つことを再確認することになった。

2023年11月2日木曜日

鏡像法(6)

鏡像法(5)からの続き

直線電流と円筒導体の問題を最初に考えたとき,電位(静電ポテンシャル)でどうするのかがわからなくて(後にものの本で調べて前回の導出に至った),電場で考えた。

つまり円筒外部の直線電荷$\lambda,\ (a,0,z) $が作る電場と,円筒内部の鏡像直線電荷$-\lambda',\ (b,0,z)$が作る電場を円筒面上で加えたもの$\bm{E(\bm{R})}$が,円筒面に垂直である$\bm{E(\bm{R})}\cdot \bm{R}=0 $という条件だ。これから $(\lambda'/\lambda)^2 = a/b$となってなんだかそれらしいけどおかしいので,ここで停止した。もう一度やり直し。

図:接地された円筒導体と直線電荷に対する鏡像法(再掲)

$\bm{E}(x,y)=\dfrac{\lambda\ (x-a, y)}{(r^2+a^2-2 a r \cos\theta)^{3/2}} - \dfrac{\lambda'\ (x-b, y)}{(r^2+b^2-2 b r \cos\theta)^{3/2}}$
$\bm{E}(x,y) \propto  (x,y)$なので,$E_x(x,y) : E_y(x,y) = x : y$

これから,
$\dfrac{\lambda\ y(x-a)}{(r^2+a^2-2 a r \cos\theta)^{3/2}} - \dfrac{\lambda'\ y(x-b)}{(r^2+b^2-2 b r \cos\theta)^{3/2}}$
$ =  \dfrac{\lambda\ x y}{(r^2+a^2-2 a r \cos\theta)^{3/2}} - \dfrac{\lambda'\ x y }{(r^2+b^2-2 b r \cos\theta)^{3/2}}$

したがって,両辺を整理して$y$でわって$r=R$とすると,
$- \dfrac{ \lambda\ a }{(R^2+a^2-2 a R \cos\theta)^{3/2}} + \dfrac{ \lambda'\ b }{(R^2+b^2-2 b R \cos\theta)^{3/2}} = 0$
$\dfrac{\lambda'}{\lambda} =  \dfrac{a}{b} \Biggl ( \dfrac{R^2+b^2-2 b R \cos\theta}{R^2+a^2-2 a R \cos\theta}\Biggr )^{3/2} = \dfrac{a}{b}\Bigl( \dfrac{2 b R}{2 a R}\Bigr)^{3/2} \Biggl ( \dfrac{(R^2+b^2)/2 b R - \cos\theta}{(R^2+a^2)/2 a R  - \cos\theta}\Biggr )^{3/2}$

これが $\theta$によらずに成り立つためには,$\dfrac{R^2+b^2}{2 b R}  = \dfrac {R^2+a^2}{2 a R} $。
したがって$R^2=ab$であり,$\dfrac{\lambda'}{\lambda} = \Bigl( \dfrac{b}{a} \Bigr)^{1/2}$



2023年11月1日水曜日

積分(2)

積分(1)からの続き

昨日の積分は,$\displaystyle I = \int _{-\pi}^{\pi} \dfrac{R^2-a^2}{R^2+a^2-2 a R \cos\theta} d\theta$
であったが,これは直線電荷と鏡像電荷から来る項の和であった。前者だけをとりだすと,
$\displaystyle I = \int _{-\pi}^{\pi} \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta} d\theta$

これを変数変換$\ t=\tan \frac{\theta}{2}$によって有理関数の形に書き換えると,
$\displaystyle I = \int _{-\infty}^{\infty} \dfrac{R-a \frac{1-t^2}{1+t^2}}{R^2+a^2-2 a R \frac{1-t^2}{1+t^2}} \dfrac{2}{1+t^2} dt $
$\displaystyle = \int _{-\infty}^{\infty} \dfrac{R(1+t^2)-a (1-t^2)}{(R^2+a^2)(1+t^2) - 2 a R(1-t^2)} \dfrac{2}{1+t^2} dt $
$\displaystyle =\int _{-\infty}^{\infty} \dfrac{(R-a)+(R+a) t^2}{(R-a)^2+(R+a)^2 t^2} \dfrac{2}{1+t^2} dt $
$\displaystyle = \dfrac{2}{R-a} \int _{-\infty}^{\infty} \dfrac{1+\alpha t^2}{1+\alpha^2 t^2} \dfrac{1}{1+t^2} dt = \dfrac{2}{R-a} \int _{-\infty}^{\infty}\Bigl\{  \dfrac{A}{1+\alpha^2 t^2} +\dfrac{B}{1+t^2} \Bigr\}dt $ 
ここで,$A=\dfrac{\alpha}{\alpha+1}, B=\dfrac{1}{\alpha+1}, \alpha = \dfrac{R+a}{R-a} < 0$ とした。
したがって,
$\displaystyle I = \dfrac{2}{R-a} \dfrac{1}{\alpha+1} \int _{-\infty}^{\infty}\Bigl\{  \dfrac{\alpha}{1+\alpha^2 t^2} +\dfrac{1}{1+t^2} \Bigr\}dt $
$\displaystyle I = \dfrac{1}{2R}\Bigl\{ \int _{\infty}^{-\infty} \dfrac{ds}{1+s^2} + \int_{-\infty}^{\infty} \dfrac{dt}{1+t^2} \Bigr\}=0$

2023年10月31日火曜日

積分(1)

今日で10月も終わり。10月1日では遅すぎるもとっくに過ぎ去ってしまった。気分が滅入る日は,写経か積分に限るのが七十を過ぎた人の常である。

昨日の最後の積分はこんな形をしていた。$\displaystyle I = \int _{-\pi}^{\pi} \dfrac{R^2-a^2}{R^2+a^2-2 a R \cos\theta} d\theta$ ただし,$a>R$である。三角関数を含む積分は有理関数の積分に変換でき,有理関数の積分は必ず解ける。というのが,水野先生が担当していた教養の解析学の最も重要な教えの一つだった。

そのセオリーに従うと,まず,$t = \tan \dfrac{\theta}{2}$とおく。このとき,$d\theta = \dfrac{2 dt}{1+t^2}$,$\cos\theta = \cos^2 \dfrac{\theta}{2} - \sin^2 \dfrac{\theta}{2} = \dfrac{1-t^2}{1+t^2}$。今回は使わないけれど,なんならば,$\sin\theta = 2 \sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2} = \dfrac{2 t}{1+t^2}$である。

これを代入すると,$\displaystyle I = \int_{-\infty}^{\infty} \dfrac{R^2-a^2}{R^2+a^2-2aR \dfrac{1-t^2}{1+t^2}}\dfrac{2 dt}{1+t^2} = \int_{-\infty}^{\infty} \dfrac{\gamma}{\alpha(1+t^2)-\beta (1-t^2)} dt$
ただし,$\alpha=R^2+a^2, \beta = 2aR, \gamma = 2(R^2-a^2)$ とおいた

したがって,$\displaystyle I = \int_{-\infty}^{\infty} \dfrac{\gamma}{(\alpha-\beta)+(\alpha + \beta) t^2} dt = \dfrac{\gamma}{\alpha -\beta}\int_{-\infty}^{\infty} \dfrac{1}{1+\frac{\alpha + \beta}{\alpha - \beta} t^2} dt $

$\displaystyle \int \dfrac{dx}{1+x^2} = \tan^{-1}x$であるから,$\displaystyle I = \dfrac{\gamma}{\alpha -\beta} \sqrt{\frac{\alpha - \beta}{\alpha + \beta}} \Biggl [ \tan^{-1} \sqrt{\frac{\alpha + \beta}{\alpha - \beta}}\ t \Biggr ]_{-\infty}^{\infty} = \dfrac{\gamma\pi}{\sqrt{\alpha^2-\beta^2}} = \dfrac{2\pi(R^2-a^2)}{|a^2-R^2|} = -2\pi $



2023年10月30日月曜日

鏡像法(5)

鏡像法(4)からの続き

接地された円筒導体について鏡像法を使う例を考える。原点Oを中心として半径$R$の円筒導体が$z$軸方向に無限に延びている(円筒面上では,$x^2+y^2=R^2$が満たされている)。$x$軸上の$(a,0,0)$を通って,$z$軸に平行で線電荷密度$\lambda$の直線がおかれている。これを鏡像法で解く際に,$x$軸上の(b,0,0)$を通って,z$軸に平行で線電荷密度$-\lambda'$の直線があると考える。円筒導体面では等電位になっており,これを基準に取る。


図:接地された円筒導体と直線電荷に対する鏡像法

円筒面上の電位は,$V(x,y) = \dfrac{\lambda}{2\pi \varepsilon_0} \log \sqrt{(x-a)^2+y^2} - \dfrac{\lambda'}{2\pi\varepsilon_0}\log \sqrt{(x-b)^2+y^2}+C$
$= \dfrac{1}{4 \pi\varepsilon_0} \Bigl\{\lambda \log (R^2+a^2-2 a x) - \lambda' \log(R^2+b^2 -2 b x) \Bigr\} +C=0$ である。

これが$x$によらずに成立するためには,$\log$の中の$x$依存性が消える必要がある。そこで,第2項を$\lambda' \log(R^2+b^2 -2 b x) = \lambda' \log \frac{b}{a}(\frac{a}{b} R^2+a b -2 a x) $と書き換えると,$V(x,y) = \dfrac{\lambda}{4 \pi\varepsilon_0} \Bigl\{ \log (R^2+a^2-2 a x) - \frac{\lambda'}{\lambda} \log (\frac{a}{b} R^2+a b -2 a x)\Bigr\}+C'$
つまり,$\lambda = \lambda',\ R^2+a^2 = \frac{a}{b} R^2+a b$ であれば$x$によらず定数になる。
これから鏡像となる直線電荷に対して,$\lambda = \lambda', R^2=a b$という条件が得られる。

この鏡像電荷が円筒導体上に分布する。導体面上の単位長さ当たり面電荷密度は$\sigma(\theta) = \varepsilon_0 E_r(\theta) R d\theta =- \varepsilon_0 \dfrac{\partial V(R)}{\partial R}R d\theta $で与えられる。$x=R \cos\theta$であることに注意して,
$E_r(\theta)=  -\dfrac{\lambda}{2 \pi\varepsilon_0} \Bigl\{ \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta}  - \dfrac{R-b \cos\theta}{R^2+b^2-2 b R \cos\theta} \Bigr\}$
$-\dfrac{\lambda}{2 \pi\varepsilon_0} \Bigl\{ \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta}  - \dfrac{R-b \cos\theta}{R^2+b^2-2 b R \cos\theta} \Bigr\}$

第2項の$b$を$b=R^2/a$によって消去して整理すると,
$E_r(\theta) = -\dfrac{\lambda}{2 \pi\varepsilon_0} \Bigl\{ \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta}  - \dfrac{R-b \cos\theta}{R^2+b^2-2 b R \cos\theta}\Bigr\}$
$= -\dfrac{\lambda}{2 \pi\varepsilon_0} \Bigl\{ \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta}  - \dfrac{R-R^2/a \cos\theta}{R^2+R^4/a^2-2 R^3/a \cos\theta}\Bigr\}$
$= -\dfrac{\lambda}{2 \pi\varepsilon_0} \Bigl\{ \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta}  - \dfrac{a^2/R- a \cos\theta}{a^2+R^2-2 a R \cos\theta}\Bigr\}$
$\therefore \sigma(\theta) = \dfrac{\lambda}{2 \pi}\dfrac{R^2-a^2}{R^2+a^2-2 a R \cos\theta} d\theta,   \ \  \int_0^{2\pi} \sigma(\theta) d\theta = - \lambda$

つまり導体円筒面には静電誘導によって単位長さ当たり$-\lambda$の電荷が誘起されることが確認できた。これは,鏡像電荷(青線)の仮定と辻褄が合っている。なお,積分の第1項はゼロであり,第2項がこの結果を与えている。また,接地されていない場合は,導体円筒の中心軸上に単位長さ当たり$+\lambda$の直線をおけば,円筒導体に誘起される電荷の総和はゼロにすることができる。

2023年10月28日土曜日

鏡像法(4)

鏡像法(3)からの続き

鏡像法による電場の境界問題が簡単に解けそうなものとして,(点電荷,直線電荷)と(導体平面,導体円筒面,導体球面)の組み合わせを考えることができる。このうち,点電荷と導体平面,点電荷と導体球面を扱った。残りの組み合わせで簡単に解けそうなのが,無限線電荷と導体平面の例である。

導体平面に平行で一様な線電荷密度の直線が距離$a$を隔てておかれている場合,平面を挟んで反対側の鏡像の位置に逆符号の線電荷密度をもった直線を考えれば,導体平面上の境界条件が満たされる。これを図で表すと下記のようになる。

図:直線電荷と導体平面がつくる系の場合

$y-z$平面に導体平面があり,点P$(a,0,0)$を通って$x-y$平面に垂直な線電荷密度$\lambda$の直線がある。この系が作る導体平面での境界条件を満たす電場は,鏡像である点Q$(-a,0,0)$を通って$x-y$平面に垂直な線電荷密度$-\lambda$の直線を考えればよい。

無限に伸びた線電荷密度$\lambda$の直線がつくる電場は直線に対して軸対称であり,直線からの距離を$r$として,$E_r(r)=\dfrac{\lambda}{2\pi \varepsilon_0 r}$となる。したがって,$y-z$平面における電場の$x$成分は,$E_x(r) = -2 E_r \cos\theta = - \dfrac{\lambda \cos\theta}{\pi \varepsilon_0 r} = - \dfrac{\lambda \cos^2 \theta}{\pi \varepsilon_0 a}$となる。ただし,図右の∠OPRを$\theta$として,$r= a/ \cos \theta$である。

点R$(0,y,0)$ 近傍における微小面積にたまる電荷を考えたい。$y=a \tan\theta$であり,$dy = \dfrac{a d\theta }{\cos^2 \theta }$であることに注意する。$z$軸方向が単位長さで$y$軸方向の微小長さ$dy$に分布する電荷量$\delta q(\theta)$は,$\delta q(\theta)=1\times dy \times \varepsilon_0 E_x= - \dfrac{\lambda a}{\pi a} \dfrac{\cos^2\theta}{\cos^2\theta} d\theta$である。これを積分すると,$\displaystyle \int_{-\pi/2}^{\pi/2}\delta q(\theta) = -\dfrac{\lambda}{\pi}  \int_{-\pi/2}^{\pi/2} d\theta =-\dfrac{\lambda}{\pi} \times \pi = -\lambda$となる。