AI Feynman(4)からの続き
「世の中のあらゆる“未知の物理現象”を予測できるAI」というおどろおどろしいタイトルの記事がITメディアに掲載されていた。えええっ,これはなんだ。
ということで,原論文「A Phenomenological AI Foundation Model for Physical Signals」を読んでみた・・・というか,NotebookLMに読ませてみた(^_^;;;)。いろいろ質問したところ,こんなことかなというのがわかってきた。と思ったけど,読解力が不足していた。これは,生成AIに頼りすぎて読み解く力が衰えてきたためだ。知能のフレイル現象。
Q(koshix):論文の内容を以下のようにまとめましたが,不正確な部分を修正してください。「ある特定の物理現象の解析にAIを用いることはよく行われている。今年のノーベル化学賞のタンパク質構造予測もその一例だろう。太陽系外惑星の探索に深層学習を利用する場合のように,大量のデータから特徴をつかみ出すことができる。あるいは大量のデータの中に潜む法則性=方程式を導くこと,さらには方程式を経由せずにデータから直接別のデータを予測することなどなどがある。今回の論文では,複数の物理現象にまたがって,背景となる物理法則を与えずに,AIによって新しい予測を可能にするというものだ。その結果,単独の現象だけでAI予測をする場合よりも精度が上がる場合があるというのだ。たぶん,複数の減少をまたぐことで,物理法則による制限がインプリシットに含まれているのではないかと思われる。5.1億個のデータを分析しているというが,何種類の実験を対象にしているのかが必ずしもはっきりしなかった。論文で例示されていたのは,減衰調和振動子でカオス的な振舞いをするもの,電流エネルギーの熱エネルギーへの転化やその逆過程,都市や国レベルの電力消費や気象データなど,複数種類のセンサーの測定値の時系列の関係を表現するものだ。測定値の時系列データは適当な時間幅に区切られて数値化し,それらの生成順序を含めたデータにすることで,大規模言語モデルのトークンのように扱うことができる。とNotebookLMは説明してくれた。なるほどもっともらしい話だ。あとは通常のLLMの手法が使えるということか。」A(NotebookLM):ご指摘いただいた論文内容のまとめについて、ソースに基づいて修正点を以下に示します。(1)物理法則を用いないAI予測:論文で提案されているAIモデルは、複数の物理現象にまたがるというよりも、物理法則に関する事前知識や帰納的バイアスを導入せずに、様々な物理現象を扱うことができる点が新しいです。このモデルは、単一の現象に特化したAI予測よりも精度が向上する場合があることが示されています。これは、多様な物理データで学習することで、物理法則による制約が暗黙的にモデルに組み込まれているためと考えられます。(2)データ分析の対象:論文では、5.1億個のデータを用いてAIモデルを学習させています。このデータは、41種類の公開データセットから収集されており、河川流量、太陽光発電量、降水量、太陽活動など、様々な現象、物理量、センサーが含まれています。論文では、減衰調和振動子、熱電変換、都市や国レベルの電力消費、気象データなどを例として挙げて、モデルの性能を検証しています。(3)時系列データの扱い:論文では、測定値の時系列データを一定の時間幅で区切り、数値化し、生成順序を含めたデータとして扱っています。これは、大規模言語モデルのトークンと同様に扱うことができるとのことですが、この記述はソースには見当たりません。NotebookLMの説明とのことですが、ソースの情報からは、このモデルが通常のLLMの手法と全く同じであるとは断言できません。(4)モデルの構造:論文で提案されているモデルは、センサーデータを入力として、それを時系列の1次元パッチに分割し、Transformerベースのエンコーダネットワークを用いて共通の埋め込み空間に射影します。このエンコーダは、多様なセンサーデータで学習することで、特定のセンサーの種類に依存しない、様々な物理現象の根底にある時間的パターンを効果的に学習します。その結果得られるコンパクトな表現は、現象論的デコーダと組み合わせて、軌跡予測や再構成などのタスクに使用されます。重要なポイント・論文では、物理法則を明示的に与えることなく、多様な物理データから学習することで、様々な物理現象を予測できるAIモデルを提案しています。・モデルは、ゼロショット学習が可能であり、学習データに含まれていない現象に対しても予測を行うことができます。・論文では、このモデルが、大規模言語モデルと類似した能力を持っている可能性を示唆しています。ご指摘いただいた内容とソースを比較検討することで、論文への理解が深まることを期待します。
図:物理AI基盤モデルの概念(A Phenomenological AI Foundation Model for Physical Signals から引用)
[2]物理現象のデータから保存則を発見するAIを開発(谷口隆晴)
[3]AI for Science とデータ駆動科学(五十嵐康彦・竹中光・永田賢二・岡田真人)
[4]人工知能の弱点を補う物理学(高安秀樹)
[5]物理法則を組み込んだ深層学習(雪島正敏・清水浩之)
0 件のコメント:
コメントを投稿