ラベル 数学 の投稿を表示しています。 すべての投稿を表示
ラベル 数学 の投稿を表示しています。 すべての投稿を表示

2024年4月27日土曜日

清少納言の知恵の板

一辺の長さが4,面積が16の正方形Sを考える。次に,直角を挟む2辺の長さが√2の直角二等辺三角形Tを考えると,その面積は1であるから,先の正方形Sの面積の16分の1に相当する。

この直角二等辺三角形Tを単位として,1枚から4枚組み合わせた図形(直角二等辺三角形,正方形,平行四辺形,等脚台形,直角台形など)の集合Rを考える。もとの正方形SをRの集合から重複を含めて選んだ図形7片に分割する。

面積だけでその分割パターンを考えると,(3-3-2-2-2-2-2),(4-2-2-2-2-2-2),(4-3-2-2-2-2-1),(3-3-3-3-2-1-1),(4-3-3-2-2-1-1),(4-4-2-2-2-1-1),(4-3-3-3-1-1-1),(4-4-3-2-1-1-1),(4-4-4-1-1-1-1)の9パターンになる。

このうちの(4-3-2-2-2-2-1)が清少納言の知恵の板という名前で知られる江戸時代に考案されたパズルであり。(4-4-2-2-2-1-1)がタングラム(七巧図)とよばれる,中国で同じころに考えられて19世紀に欧米に伝わって普及したシルエットパズルだ。これらの起源や関係などははっきりしていない。

図:清少納言の知恵の板(上)とタングラム(下)

[1]江戸のパズルに挑戦

2024年4月18日木曜日

オイラーのφ関数

MIPOの算数・数学コラムで,2024年阪大理系前期数学の問題が取り上げられていた。鈴木貫太郎のYouTubeで大学入試問題をながめていたので,甘く見ていたら,かなり難しくてちょっと手が出なかった。面白そうな整数論の問題は,オイラーのφ関数がストレートに取り上げられていた。以下ではすべて自然数 N = {1,2,...∞}の範囲に限定して考えることにする。


n∈Nに対して,集合A(n)={1,2,…n}を考える。このとき,φ(n)は,この集合A(n)におけるnと互いに素な数の個数を与える。さあ,ここからが苦難の道の始まりだ。最近はアルジャーノンの下り坂を急降下中なので,言葉の定義にいちいち引っかかってころぶのである。

約数:自然数 n を自然数m (≦ n)で割ったときの余りが0であれば,mはnの約数である。
 例:2は6の約数,1はnの約数,nはnの約数
互いに素:2つの自然数 m,n の共通の約数が1だけのとき,mとnは互いに素である。
 例:2と3は互いに素である,nと1は互いに素である,nとnは互いに素でない。

例:n=6のとき,A(6)={1,2,3,4,5,6}を考える。2の倍数の集合Pは{2,4,6}, 3の倍数の集合Qは{3,6}, 
6の倍数の集合はP∩Q={6}は,6と互いに素な数の集合はA-P∪Q={1,5}で, その要素数はφ(6)=2

オイラーのφ関数(トーシエント関数)φ(n)は,A(n)においてnと互いに素な数がなす部分集合B(n)の要素数を表す。A(n)-B(n) は nの約数の集合から{1}を除いた集合PQRである。

阪大の問題は,p,q,r が素数,a,b,c が自然数として n=p^a q^b r^cに対するφ(n)を求めるものである。とりあえず,A(n)における p,q,rの倍数の数をカウントすればよい。


図:φ(n) = n(B(n))=n(A(n)-PQR)   の図

n= p^a q^b r^c の場合,n= p^(a-1) q^(b-1) r^(c-1) p q r として,φ(n) = p^(a-1) q^(b-1) r^(c-1) φ(p q r )となる。また,φ(p q r) = (p-1)(q-1)(r-1) となるので,φ(n) =p^(a-1) q^(b-1) r^(c-1) (p-1)(q-1)(r-1) で与えられる。

2024年4月10日水曜日

鉄の星:テイン

早川書房世界SF全集の第4巻はガーンズバック/テインのラルフ124C41+/鉄の星だ。

ラルフ124C41+は小学校時代に友達に借りた学習雑誌の付録で読んだだけ。世界SF大会で毎年選ばれるヒューゴー賞は,1953年に創設された由緒正しいものだが,アメリカSF界の初期の功労者であり,ラルフ124C41+の著者ヒューゴー・ガーンズバック(1884-1967)にちなんで名付けられている。

問題はそちらではなく併録されている「テイン」の「鉄の星」のほうだ。そのころから今に至るまでテインが誰かもよくわからなかったし,鉄の星にもまったく興味がわかなかったので第4巻は買わずにいた。ところがです。この度調べてみると,鉄の星(Iron Star)の著者ジョン・テイン=John Taine は,数学者 Eric Temple Bell (1883-1960)のペンネームだった。


数学者のE. T. ベルの方はよく知っていた。ハヤカワ文庫の「数学を作った人々」の著者である。その3冊組は自分の本棚に並んでいる。E. T. ベルはジョン・テインのペンネームでいろいろとSFを書いているようだ。物理学者でいえば,フレッド・ホイルに少し似ている。

そのベルが数学者としてどんな仕事をしているのかというと,ベル数ベル多項式を考えた人だった。ベル数$B_n$とは異なった$n$個の対象を分割する方法の数である。異なった$n$個の対象を$r$個のグループに分割するのは第2種スターリング数$_nS_r$であり,その和がベル数になる。

$n=5$のベル数は,$B_5=52$となるが,これは源氏香の数に等しい。源氏香という香道の遊び方は,本質的に異なった5種の香の分類の問題=ベル数5の問題だった。


図:五種の香をかぎ分ける源氏香の52パターン(Wikipediaから引用)

E. T. ベル=ジョン・テインのSFは,日本では前述の鉄の星を除いて出版されていない。カナダのGutenbergプロジェクトにはかろうじて,The Iron Star が公開されていた

2024年2月9日金曜日

直角

理科クラブと算数クラブからの続き

小学校4年の算数の時間のことだ。折り紙を2回折ると直角をつくることができるという話になった。そこで,先生がみんなに尋ねた。折り方によって直角はいくつくらい作ることができるでしょう。さっそく折り紙をもちながらクラスでわいわいと議論がはじまった。

クラスの中でもよくできて運動も得意で発言力のあった中田君が3000くらいかなあといった。それに賛同する子が多かった。選挙で自民党に票が集まるのと同じ原理だ。強いものが正義であり真理なのである。これに対して,転校生でちょっとみんなからはずれていた眼鏡の松村さんと自分が,それはおかしい,ほんの少しでも折り線をずらせば可能なので,無数にできるはずだと主張した。

教訓1:真理はかならずしも多数決では決まらない
教訓2:力(権威)が大衆の正義になることは多い

自分が苦手だった沢崎先生はどうやってその結果を集約したのだろうか。そのあたりははっきり覚えていない。


写真:おりがみで直角をつくる方法


2024年2月8日木曜日

理科クラブと算数クラブ

中国の小学生の数学からの続き

1964年,泉野小学校では,5年生になるとクラブ活動が始まった。モーターを使って自動車をつくる工作クラブもおもしろそうだったが,理科クラブのほうに入った。初回は担当の先生がこどもの名前を確認していくのだけれど,腰切と板書されて話がなかなか遠かった。上級生の活動発表では,水酸化ナトリウム水溶液で煮出した木の葉から葉脈標本を作るというのが印象的だった。

ともだちと数人のグループで何をテーマにしようかと相談した。その結果,ビーカーに入れた食塩水の濃度をかえたものをいくつか用意して,おたまじゃくしがどこまで大丈夫かを確かめようというとんでもない実験をすることになった。このあたり,先生の指導はほとんどいきとどいていない。結局食塩水の濃度計算だけ上達することになった。おたまじゃくしは結構の濃度まで耐えていたかもしれない。

さて,6年生になると学年のクラス数がこれまでの3組から4組に増えた。そこまで児童の数は増えていなかったはずなのだがどうしてだろう。5年2組の南毅先生(社会)から,6年4組の前多光子先生(理科)に担任は変わった。隣の6年3組には中薮先生(算数)が新しく着任した。どうやらかなり厳しく怖い先生だという噂がすぐに伝わってきた。

ある日,その中薮先生が新しく算数クラブを作ることになったというアナウンスがあった。思わずハイハイハイ,そのクラブに入りますと大きな声で訴えた。算数クラブには10人あまりのこどもたちが集まっただろうか。毎週一回のクラブの時間はとても刺激的で楽しかった。

ただ,覚えているのは,一筆書き三角数と四角数,図形の面積のパラドックスくらいだ。一筆書きでは,奇数点が0個か2個のときだけ可能だということを学んだ。三角数の規則性について説明があった後で,四角数はどうなるだろうかという設問に,わかったと思って挙手して答えたけれど,どうもうまくことばで説明することができなかった。中薮先生は,算数クラブではたいへんやさしく指導してくれた。


図:三角数と四角数(イミダスからの引用)

(注)大杉君は,中薮先生のクラスだったが,6年3組の算数の時間には,台形の対角線を結んでできた左右側の三角形の面積が等しいことを説明させるという授業が展開されていたことを教えてくれた。

2024年2月6日火曜日

中国の小学生の数学

中国の小学生が解いている数学の問題という触れ込みで次の面積を求める問いがあった。

図1:4分円と半円の交わる部分の面積を求める

小学生にも出来るはずだということで,いろいろ考えたけれど,どうしても解けない。いや,$ \tan^{-1} \alpha = 1/2, \tan^{-1}\beta = 2$によって,図の2つの角度さえ求めてよいならば,扇型AOEGの面積が $S_1=\alpha a^2$,扇型DOEGの面積が$S_2=\beta (a/2)^2$,そして四角形OAGDの面積が,$S_3=a^2/2$であることを用いて,求める面積は $S = S_1+S_2-S_3$となる。

あるいは,解析幾何学を使ってよいのならば,2つの円の式の交点からG$=(4a/5, 2a/5)$となり,面積は積分を使って,$S=\displaystyle \int_0^{4a/5} \Bigl( \sqrt{(a/2)^2-(x-a/2)^2}-a+\sqrt{a^2-x^2} \Bigr)\  dx$となる。

いずれにせよ,答えは,正方形OABCの一辺を$a=4$として,$S \approx 3.847$ である。
結局,中国の小学生はどうやってこの問題を解いているのだろうか


小学生のとき,似たような問題で長いこと未解決でクラスのみんなであれこれ議論したものがあった。それは図2右のようなもので,正方形の中の四つの四分円の交わる領域の面積を求めるものだ。図2左は授業でもよく出てくる問題であり,これならみんな解ける。

図2:小学校のときの未解決問題(右図)

あるとき,塾に通っていた友人たちが,塾の先生から答えを聞いてきて披露したことがあった。それはだめでしょう。せっかくみんなで自分たちで答えをだそうとがんばっていたのに。その解法には正三角形の面積を求める過程がふくまれていて平方根が登場する。小学生には無理な問題だったのだ。

いや,じつはそれほど無理でもない。小学校5,6年のときだろうか,学校で一番頭の良いことで有名だった大杉君というのが,平方根の筆算による計算法(開平法をどこかで学んできて,みんなに教えてくれたことがあった。なるほど,そういうことかと計算できるようになった友達は多い。たぶん,ピタゴラスの定理もどこかで聞きかじっていたかもしれないので,実はもう少しで解けるあたりまでの知識は蓄積していたはずなのだ。

2024年1月26日金曜日

正方形の長さ

都道府県の長さからの続き

正方形の領域$\ (x, y), \ 0 \le x \le 1$,$0 \le y \le 1\ $を考えて,この中の2点を$\ (x_1,y_1),\ (x_2, y_2)\ $とする。これらの座標が$\ p_0(z)=1\ (0 \le z \le 1),\  =0\ (z <0,\  1 < z)\ $で一様分布している。

このとき,確率変数の和と差の説明により,$x=x_1-x_2\ $と$\ y=y_1-y_2\ $は,$p(z)=1+z\ (-1 \le z \le 0),\  =1-z\ (0 \le z \le 1)\ $という確率分布になる。また,$X=(x_1+x_2)/2\ $と$Y=(y_1+y_2)/2\ $の確率分布は,$q(z)=z\ (0 \le z \le 1),\  =2-z\ (1 \le z \le 2)\ $となる。

そこで,2点の期待値は,$d=\int \int \int \int \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} \ p_0(x_1) p_0(x_2) p_0(y_1) p_0(y_2) \ dx_1 dx_2 dy_1 dy_2 $
$\quad = \int \int \int \int \sqrt{x^2+y^2}\  p(x) p(y) q(X) q(Y) \ dx dy dX dY$
$\quad = \int \int \sqrt{x^2+y^2} \ p(x) p(y) \ dx dy = 4 \int_0^1 \int_0^1 (1-x)(1-y) \sqrt{x^2+y^2} \ dx dy$

ここで,$y = x \sinh z \ $と変数変換して,$y\ $の積分すなわち$z\ $での積分を先に行う。このとき,$y: 0\rightarrow 1\ $より,$z:0 \rightarrow \sinh^{-1}(1/x) = z_x\ $ $\bigl( \cosh z_x = \sqrt{1 + (1/x)^2} \ \bigr)$ であり,$\sqrt{x^2+y^2}= x \cosh x\ $と$\ dy = x\ \cosh z\ dz\ $が成り立つ。

$f(x) = \int_0^1 (1-y) \sqrt{x^2+y^2} dy = \int_0^{z_x} (1 - x \sinh z ) \cdot x \cosh z \cdot x \cosh z\  dz$
$\displaystyle \quad = \frac{x^2}{2} \int_0^{z_x} (1 + \cosh 2z )\ dz -\frac{x^3}{3} \Bigl[ \cosh^3 z \Bigr]_0^{z_x}$
$\displaystyle \quad =  \frac{x^2}{2}  \Bigl( \sinh^{-1}(1/x) + \sinh z_x \cosh z_x \Bigr) -\frac{x^3}{3} \Bigl( \cosh^3 z _x -1 \Bigr)$
$\displaystyle \quad = \frac{x^2}{2} \sinh^{-1}(1/x) + \frac{1}{2} \sqrt{1+x^2} +\frac{1}{3} x^3 - \frac{1}{3} (1+x^2)^{3/2}$

次に,これに$(1-x)$をかけて,$x$で積分してから4倍すれば$d$が求まる。
$\displaystyle d= 4\int_0^1 (1-x) \Bigl\{ \frac{x^2}{2} \sinh^{-1}(1/x) + \frac{1}{2} \sqrt{1+x^2} +\frac{1}{3} x^3 - \frac{1}{3} (1+x^2)^{3/2} \Bigr\} dx$

$g_1(x)=4 \int (1-x) \frac{x^2}{2} \sinh^{-1}(1/x) \ dx $
$\quad = \frac{1}{6}(2+2x-x^2)\sqrt{1+x^2} +\frac{1}{6}(-2+4x^4-3x^4)\sinh^{-1}x$
$g_2(x)=4 \int (1-x) \frac{1}{2} \sqrt{1+x^2} \ dx = -\frac{1}{3} (2-3x+2x^2) \sqrt{1+x^2} + \sinh^{-1}x$
$g_3(x)=4 \int (1-x) \frac{1}{3} x^3 \ dx = \frac{1}{3} x^4 -\frac{4}{15}x^5$
$g_4(x)=4 \int (1-x) \frac{-1}{3} (1+x^2)\ ^{3/2} \ dx $
$\quad = \frac{1}{30} (8-25x+16x^2-10x^3+8x^4) \sqrt{1+x^2} -\frac{1}{2} \sinh^{-1}x$

$\therefore g(x) = g_1(x)+g_2(x)+g_3(x)+g_4(x) = \frac{1}{15}(5 x^4 -4x^5) +$
$\quad  \frac{1}{30}(8x^4-10x^3-9x^2+15x-2)\sqrt{1+x^2} +\frac{1}{6}(-3x^4+4x^3+1)\sinh^{-1}x$

これから,$d=g(1)-g(0)=\frac{1}{15}\Bigl\{2+\sqrt{2}+5 \log(1+\sqrt{2}) \Bigr\}= 0.521405\ $が得られた。


2024年1月24日水曜日

積分漸化式

積分(3)からの続き

三角関数の積分の漸化式が教科書に載っていたことをいまごろ思い出した。これならば双曲線関数にも簡単にあてはめられるはずだ。

$I_n = \int \sin^n x \ dx =  (-\cos x) \sin^{n-1} x - \int  (-\cos x) (n-1) \sin^{n-2} x \cos x\ dx$
$\quad = (-\cos x) \sin^{n-1} x + (n-1) \int (1-\sin^2 x) \sin^{n-2} x \ dx$
$\quad = (-\cos x) \sin^{n-1} x + (n-1) (I_{n-2} - I_n )$
$\therefore I_n = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \cos^n x \ dx =  (\sin x) \cos^{n-1} x - \int  (\sin x) (n-1) \cos^{n-2} x (-\sin x) \ dx$
$\quad = (\sin x) \cos^{n-1} x + (n-1) \int (1-\cos^2 x) \cos^{n-2} x \ dx$
$\quad = (\sin x) \cos^{n-1} x + (n-1) (I_{n-2} - I_n )$
$\therefore I_n = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \tan^n x \ dx =   \int  (\frac{1}{\cos^2 x} -1) \tan^{n-2} x \ dx$
$\quad = \int (\tan x)' \tan^{n-2} x\ dx -  \int \tan^{n-2} x \ dx$
$\therefore I_n = \frac{1}{n-1}\tan^{n-1} x - I_{n-2}  \quad (n \ge 2) $

$I_n = \int \sinh^n x \ dx =  (\cosh x) \sinh^{n-1} x - \int  (\cosh x) (n-1) \sinh^{n-2} x \cosh x\ dx$
$\quad = \cosh x\ \sinh^{n-1} x - (n-1) \int (1+\sinh^2 x) \sinh^{n-2} x \ dx$
$\quad = \cosh x\ \sinh^{n-1} x - (n-1) (I_{n-2} + I_n )$
$\therefore I_n = \frac{1}{n} \cosh x\ \sinh^{n-1} x - \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \cosh^n x \ dx =  (\sinh x) \cosh^{n-1} x - \int  (\sinh x) (n-1) \cosh^{n-2} x \sinh x \ dx$
$\quad = \sinh x \cosh^{n-1} x - (n-1) \int (\cosh^2 x -1) \cosh^{n-2} x \ dx$
$\quad = \sinh x \cosh^{n-1} x + (n-1) (I_{n-2} - I_n )$
$\therefore I_n = \frac{1}{n} \sinh x \cosh^{n-1} x + \frac{n-1}{n} I_{n-2} \quad (n \ge 2) $

$I_n = \int \tanh^n x \ dx =   \int  (1-\frac{1}{\cosh^2 x} ) \tanh^{n-2} x \ dx$
$\quad = -\int (\tanh x)' \tanh^{n-2} x\ dx + \int \tanh^{n-2} x \ dx$
$\therefore I_n = -\frac{1}{n-1}\tanh^{n-1} x + I_{n-2}  \quad (n \ge 2) $

2024年1月22日月曜日

積分(3)

都道府県の長さからの続き

次の積分 $I_n=\int x^n \sqrt{x^2 + y^2} \ dx $  が必要なのであった。
そこで,$x=y\ \sinh z$と変数変換して,$dx = y \cosh z\ dz $と$\sqrt{x^2+y^2} = y \cosh z$
から,$I_n = y^{n+2} \int \sinh^n z\ \cosh^2 z\ dz$となる。後で必要になるものとして,$J_n = \int \sinh^n z \ dz $を定義しておく。

$I_0 = y^2 \int \cosh^2 z\  dz = \frac{1}{2} y^2  \int (1 + \cosh 2z) \ dz $
$=  \frac{1}{2} y^2 (z + \frac{1}{2} \sinh 2 z) =  \frac{1}{2} y^2  \sinh^{-1}(x/y) + \frac{1}{2}x \sqrt{x^2+y^2} $

$I_1 = y^3 \int  \sinh z\ \cosh^2 z\ dz =  y^3 \int t^2 dt = \frac{1}{3}\bigl( \sqrt{x^2+y^2}\bigr)^3$

$I_2 = y^4 \int \sinh^2 z\ \cosh^2 z \ dz = y^4 \int (\sinh^2 z + \sinh^4 z )\ dz = y^4 (J_2 + J_4)$

$I_3 = y^5 \int \sinh^3 z\ \cosh^2 z\ dz = y^5 \int (\sinh^3 z + \sinh^5 z )\ dz = y^5 (J_3 + J_5)$

などとなる。

$J_2 = \int \sinh^2 z \ dz = \frac{1}{2} \int (\cosh 2z -1) \ dz =  \frac{1}{4} \sinh 2z - \frac{1}{2} z$

$J_3 = \int \sinh^3 z \ dz = \int (\cosh^2 z -1) \sinh z \ dz = \frac{1}{3} \cosh^3 z - \cosh z$

$J_4 =  \int \sinh^4 z \ dz = \frac{1}{4} \int (\cosh 2z -1)^2 \ dz = \int \bigl( \frac{3}{8}-\frac{1}{2}\cosh 2z + \frac{1}{2} \cosh 4z  \bigr) \ dz$
$\quad = \frac{1}{8} \sinh 4z -\frac{1}{4} \sinh 2 z + \frac{3}{8}z $

結局$J_n$がシステマティックに計算できればよいということか。続く。

2024年1月21日日曜日

双曲線関数

都道府県の長さからの続き

一様分布の確率密度関数で正方形の内部のランダムな2点の平均距離を求める際に,面倒な積分が必要になる。このとき双曲線関数への変数変換を行うのだが,久しぶりに使うと勘が鈍っていてなかなか計算が進まない。ので,復習する。

$\sinh x = \dfrac{e^x - e^{-x}}{2},\ \  \cosh x = \dfrac{e^x + e^{-x}}{2},\ \  \tanh x = \dfrac{\sinh x}{\cosh x} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}}$
$\cosh^2 x - \sinh^2 x = 1, \ \ \tanh^2 x = 1 - \dfrac{1}{\cosh^2 x},\ \ \dfrac{1}{\tanh^2 x} = 1 +  \dfrac{1}{\sinh^2 x}$
$\frac{d}{dx}\sinh x = \cosh x,\ \ \frac{d}{dx}\cosh x = \sinh x, \ \  \frac{d}{dx} \tanh x = \dfrac{1}{\cosh^2 x}$
$\int \sinh x \ dx= \cosh x,\ \ \int \cosh x \ dx = \sinh x, \ \  \int \tanh x\ dx = \log( \cosh x)$


$\sinh ( x \pm y )= \sinh x \cosh y \pm \cosh x \sinh y$
$\cosh ( x \pm y )= \cosh x \cosh y \pm \sinh x \sinh y$
$\tanh ( x \pm y )= \dfrac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$

$\sinh 2x  = 2 \sinh x \cosh x = 2 \sinh x \sqrt{1 + \sinh^2 x}$
$\cosh 2x = 2 \cosh^2 x - 1 = 2 \sinh^2 x + 1$

$\sinh 3x  = \sinh^3 x + 3 \sinh x \cosh^2 x$
$\cosh 3x = \cosh^3 x + 3 \cosh x \sinh^2 x$

$\sinh 4x  = 4 \sinh^3 x \cosh x + 4 \sinh x \cosh^3 x$
$\cosh 4x =  \sinh^4 x + 6  \sinh^2 x +\cosh^2 x + \cosh^4 x$

$\sinh^{-1}x = \log ( x + \sqrt{x^2+1} ) = -\log(\sqrt{x^2+1} - x)$
$\cosh^{-1} x = \log (x + \sqrt{x^2-1}) = \log(x - \sqrt{x^2-1})$
$\tanh^{-1} x = \dfrac{1}{2} \log{\dfrac{x+1}{x-1}}$

$\frac{d}{dx}\sinh^{-1} x = \dfrac{1}{\sqrt{x^2+1}},\ \ \frac{d}{dx}\cosh^{-1} x = \dfrac{1}{\sqrt{x^2-1}}, \ \  \frac{d}{dx} \tanh^{-1} x = \dfrac{1}{1-x^2}$

$\int \sinh^{-1} x \ dx= x \sinh^{-1} x - \sqrt{x^2+1}$
$\int \cosh^{-1} x \ dx = x \cosh^{-1} x  - \sqrt{x^2-1}$
$\int \tanh^{-1} x\ dx = x \tanh^{-1} x + \frac{1}{2}\log(1-x^2)$



図:双曲線関数の定義

2024年1月13日土曜日

類楕円

真鍋さんのホームページ(MIPO)では神社の算額がよく取り上げらていれる。最近は,ChatGPTでPython プログラミングという新たな進化のステージの突入している。算額で登場する類楕円という4次曲線のグラフを描かせるプログラムを作るという問題がでてきた。

「類楕円」というのは初耳だった。調べてもあまり情報が見つからないのだが,トーラスを軸対称軸に平行な平面で切断してときに出来る4次曲線のようだ。トーラスの大円の半径を$d$,小円の半径を $b$とする。トーラスの中心を原点Oとして,軸対称の軸方向を$y$軸として,大円を含む平面を$x-z$平面とする。切断面の方程式は,$\underline{ z=d}$となる。
なお,下図より$(d+b)^2=a^2+d^2$,したがって$a^2=b^2+2db$である。


図:類楕円の定義

トーラス表面上の点をP:$\bm{r} = (x,y,z)$とする,これは大円上の点を表すベクトル$\bm{d}=(d\cos\varphi, 0, d\sin\varphi)$と,大円上の点からトーラス面上の点への相対ベクトル$\bm{s}=(b \sin \theta \sin \varphi, b \cos\theta, b \sin \theta \cos \varphi)$の和,$\bm{r}=\bm{d}+\bm{s}$になる。すなわち,
$ \bm{r} = (x,y,z) = ( (d+b \sin \theta) \sin \varphi,  b\cos\theta,  (d + b \sin \theta) \cos \varphi) $である。

これらから,$b \sin \theta = \sqrt{b^2-y^2}$,$(d +  \sqrt{b^2-y^2})^2 = x^2 + d^2$となる。
つまり,$b^2-y^2 + 2d \sqrt{b^2-y^2} = x^2$,$4d^2\ (b^2-y^2) = (x^2+y^2-b^2)^2$,

$\therefore (a^2-b^2)(b^2-y^2) = b^2 (x^2+y^2-b^2)^2$ が類楕円の4次式である。



2024年1月11日木曜日

見せ算

M-1グランプリ2023からの続き

漫才コンビさや香の新山が考案した「見せ算」である。これは,一般人と最先端のテクノロジーやシステムが乖離している世の中で,その問題を解消するためには一般人の数学力の強化が必要だとの主張から始まる。加減乗除の四則演算では少ないので新山が作った五則目の演算が見せ算である。

見せ算」は,数字と数字を見合わせてどう思うかという演算だ(訳註:演算記号は指定されていないので,ここでは目に似ている@=みせを採用する)。この演算の答えは,和差積商に並んで「眼(がん)」という。

基本ルールその1:(例)1@1=0
 同じ数字どうしが見合うと恥ずいのでお互い立ち去るからゼロになる。
基本ルールその2:(例)1@2=2
 違う数字が見合うとき,小さい方が大きい方を見ると怖いから立ち去るので大きい方が残る。
応用編その1:(例)6@9=11
 お互いに見合うと俺かとなって近づいていって11になる。
応用編その2:(例)2@5= 1.1
 お互いに俺かとなって近づいたけれど反転していて違うので携帯を落として1.1になる。
応用編その3:(例)1@100=83⇒84
 これは難しいので(訳註:説明略)大学院のルールだ。

図:見せ算に使う数字の形

数字の形によって結果が変わらないように,(端点の数,曲がり角の数,三差路の数)のセットで分類してみれば,確かに6と9は同じグループ(1-4-1)であり,2と5も同じグループ(2-4-0)だ。前者は回転操作で重なるが,後者を重ねるためには反転操作が必要だ。それ以外には同等の数字はなかった。


2023年12月18日月曜日

モーリーの定理

真鍋さんのウェブサイトMIPOのブログには,算数・数学コラムというのがあって,おもしろい算額の問題などがしばしば取り上げられている。

で,先日モーリーの定理という,三角形の内角の三等分線がつくる図形が正三角形になるという問題を証明していた。なるほど。図形の問題は苦手なので,解析幾何学の手法でできないか考えてみた。

1辺と両端の2角を与えれば三角形は定まる。現れるすべての座標はその辺の長さに比例するので,辺の長さAB=1とする。∠A=$3\alpha$,∠B=$3\beta$,∠C=$3\gamma$とすると,$\gamma = \frac{\pi}{3}-\alpha-\beta$で定まる。結局全ての量が2つの角度$\alpha,\beta$で表される。

これは実は問題の対称性を損ねるので,標準解答と比較しても良策ではないのだけれど,乗り掛った舟なのでやってみる。


図:モーリーの定理の証明

まず三角形ABCの頂点Aを原点(0,0)とし,頂点Bを(1,0)とする。このとき頂点C$(p,q)$は,$y=\tan 3\alpha$と$y=-\tan 3\beta (x-1)$の交点として求まり,$(p,q) =\Bigl( \dfrac{\tan3\beta}{\tan3\alpha+\tan3\beta},\dfrac{\tan3\alpha \tan3\beta}{\tan3\alpha + \tan3\beta} \Bigr)$となる。

同様にして,∠の三等分線の交点として(P,Q,R)の3点求めればよい。

(1) ABからの三等分線の交点P
$y=\tan \alpha\ x \ \&\  y = -\tan \beta\ (x-1)\ $の交点は,
$(p_1,q_1) =\Bigl( \dfrac{\tan\beta}{\tan\alpha+\tan\beta},\dfrac{\tan\alpha \tan\beta}{\tan\alpha + \tan\beta} \Bigr)$

(2) ACからの三等分線の交点Q
$y=\tan 2\alpha\ x \ \&\  y = -\tan (3\beta+2\gamma)(x-p)+q\ $の交点は,
$(p_2,q_2) =\Bigl(\dfrac{p \tan(3\beta+2\gamma) + q}{\tan2\alpha+\tan(3\beta+2\gamma)},\dfrac{\tan2\alpha \{p \tan(3\beta+2\gamma)+q\}}{\tan2\alpha + \tan(3\beta+2\gamma)}\Bigr)$

(3) BCからの三等分線の交点R
$y=-\tan 2\beta\ (x-1) \ \&\  y = -\tan (3\beta+\gamma)(x-p)+q\ $の交点は,
$(p_2,q_2) =\Bigl( \dfrac{p \tan(3\beta+\gamma) -\tan2\beta + q}{\tan(3\beta+\gamma)-\tan2\beta}, -\dfrac{\tan2\beta\{(p-1) \tan(3\beta+\gamma)  +q\}}{ \tan(3\beta+\gamma) -\tan2\beta } \Bigr)$

これから3点の距離を計算すれば良いのだけれど,ちょっと人間の手には負えなかった。
Mathematicaで計算すると,なんとか確認することができた。

In[1]:= c[a_, b_] := Pi/3 - a - b

In[2]:= p[a_, b_] := Tan[3 b]/(Tan[3 a] + Tan[3 b])
q[a_, b_] := Tan[3 a] Tan[3 b]/(Tan[3 a] + Tan[3 b])

In[3]:= p1[a_, b_] := Tan[b]/(Tan[a] + Tan[b])
q1[a_, b_] := Tan[a] Tan[b]/(Tan[a] + Tan[b])

In[4]:= 
p2[a_, b_] := (p[a, b] Tan[3 b + 2 c[a, b]] + q[a, b])/(Tan[2 a] + Tan[3 b + 2 c[a, b]])
q2[a_, b_] := 
 Tan[2 a] (p[a, b] Tan[3 b + 2 c[a, b]] + q[a, b])/(Tan[2 a] + Tan[3 b + 2 c[a, b]])

In[5]:= 
p3[a_, b_] := (p[a, b] Tan[3 b + c[a, b]] - Tan[2 b] + 
    q[a, b])/(Tan[3 b + c[a, b]] - Tan[2 b])
q3[a_, b_] := -Tan[
    2 b] (((p[a, b] - 1) Tan[3 b + c[a, b]] + 
      q[a, b])/(Tan[3 b + c[a, b]] - Tan[2 b]))

In[6]:= (p1[a, b] - p2[a, b])^2 + (q1[a, b] - 
     q2[a, b])^2 - (p2[a, b] - p3[a, b])^2 - (q2[a, b] - 
     q3[a, b])^2 // Simplify

Out[7]= 0

In[8]:= (p2[a, b] - p3[a, b])^2 + (q2[a, b] - 
     q3[a, b])^2 - (p3[a, b] - p1[a, b])^2 - (q3[a, b] - 
     q1[a, b])^2 // Simplify

Out[9]= 0


[1]三角形の外角の三等分線の場合(時岡郁夫さん)

2023年12月12日火曜日

四角形

三角形(3)からの続き

小学生の問題から離れられない。

長方形($a \times b$)があって,その1つの角が小さな長方形($p \times q$)の形に欠けている。この図形の面積を2等分する直線を求めよというものだ。問題では辺の長さの情報が与えられていない。どうするのかと思って解答をみた。それは,与えられたL型の図形を2つの長方形の組み合わせとみなし,それぞれの長方形の中心点を結ぶ直線を引けばよいというものだ。なるほど,小学生でも理解できる。この直線の図形内の中点を中心に,図形の角を越えない範囲で直線を回転させればそれらも解になる。

ところで,その欠けた部分が大きくなると,この方法ではうまくいかない。というのも直線で分割される角の欠けた側の領域が連結領域ではなくなり,バラバラになってしまうからだ。これを避けるためには,欠けた側と反対側の角を通る直線で,面積が等しくなるものを探せば良い。中学生レベルの問題になる。


図:直線APによる四角形の面積の二等分($\frac{a}{b}>\frac{p}{q}$の場合)

直線ACは四角形ABCDの面積をS1(△)とS2(△)に2等分するが,左図形から引き去る部分は台形CEFR,右図形では三角形CGRなので,S1(左) <  S2(右)となる。そこで,分割線をAPにずらせば,S(左)=S(右)となる点が見つかるはずだ。

ずらす距離PC=$x$とおいて立式すると,$2S_1 = b(a-x)-q\bigl\{ 2(p-x)+\dfrac{q(x-a)}{b}\bigr\}$,$2S_2 = (b-q)\bigl\{ a+\dfrac{x(b-q)+aq}{b}\bigr\}$となる。これを等しいとして$x$を求めると,$x=\dfrac{q(a q- b p)}{(b-q)^2}$と求まった。

めでたしめでたしというところだ。ところで,$\frac{a}{b}=\frac{p}{q}$でもとの四角形と切り欠きの四角形が相似となる。このため,最初の対角線が2等分線となって$x=0$になる。ということは,$x<0$の場合が出てくるということか。おかしいのでしばらく悩んだ。

良く考えると,この場合は,欠けた図形の角が対角線より右側になるので,P点はCG上に持ってきてCP=$y$と置く必要がある。すなわち,この場合は,$a$と$b$,$p$と$q$を入れ替えて同じ式を解くことになるので,$y=\dfrac{p(b p- a q)}{(a-p)^2}$とすればよいことになる。




2023年12月9日土曜日

三角形(3)

三角形(2)からの続き

小学生向けの簡単な図形の問題を見かけた。a, b が与えられたときにx を求めれば良いというものだ。適当な補助線を引いてもわからなかったので,思わずピタゴラスの定理を使った複雑な方程式を立てて解いてしまった。

塾の先生のようなしゃべり方の人の解答をみると,どうやら,45度の三角形の解法パターンというのがあるらしい。そこで,問題を一般化したのが次の図である。これで,台形の面積の出し方や三角形の合同についての知識さえあれば,ピタゴラスの定理無しで問題が解けることになった。

日々,思考の水準が弱っていくのがわかる。そのうち小学生の問題も解けなくなりそうだ。


図:45度の三角形を含む簡単な問題

2023年11月29日水曜日

大小関係

よくある問題で,冪数の大小比較というのがある。その例で次のようなものがあった。

$M=\displaystyle \begin{pmatrix} e^e & e^3 & e^\pi \\ 3^e & 3^3 & 3^\pi \\ \pi^e & \pi^3 & \pi^\pi \end{pmatrix}$の9個の数の大小関係を求めよ。
ただし,$e=2.7183 < 3 < \pi=3.1416$はわかっているとする。

各行や各列で比較すると,行番号や列番号が増えると大きくなる。
次に,$M_{12}=e^3$と$M_{21}=3^e$,$M_{23}=3^\pi$と$M_{32}=\pi^3$,$M_{31}=\pi^e$と$M_{13}=e^\pi$を比較する。それぞれ,両者のべきの積の逆数を双方にかけると,$x^\frac{1}{x}$の形での比較に帰着する。この関数の対数をとって$f(x)$とおけば,$f(x) = \frac{\log x}{x},\ f'(x) = \frac{1 - \log x}{x^2}$の形から,$e^\frac{1}{e} < 3^\frac{1}{3} < \pi^\frac{1}{\pi}$である。


図:$f(x) = \log x^{1/x}$とその微分 $f'(x)=(1-\log x)/x^2$のグラフ

したがって,$  3^e < e^3 ,\  \pi^e < e^\pi,\  \pi^3 < 3^\pi $が成り立つ。残るのは,$3^3$と$e^\pi$または$\pi^e$の関係である。これがちょっとわからなかった。仕方がないので,数値的に評価することに。

$\log M_{13}=\pi = 3 + 0.1416$,$\log M_{33} = 3 \log 3 = 3 + 3(\log3 - \log e) = 3 + 3 \log \frac{3}{e}$
$3 \log \frac{3}{e} = 3 \log (1 + \frac{3-e}{e}) \approx 3 \Bigr\{ \frac{3-e}{e}-\frac{1}{2} \bigl( \frac{3-e}{e}\bigr)^2 + \cdots \Bigr\}= 0.295$ 。したがって,$e^\pi < 3^3$

結局,$e^e < 3^e < e^3 <  \pi^e  <  e^\pi <  3^3 < \pi^3 <  3^\pi < \pi^\pi$ となった。


追伸(2023.11.19):ひとつ確認もれがあった。$e^3$ と$\pi^e$の大小関係である。
対数をとると,$3$と$e \log \pi$の比較になる。
$\log \pi = \log e(1 + \frac{\pi-e}{e}) = 1 +  \log ( 1 + \frac{\pi-e}{e} ) \approx 1 + \frac{\pi-e}{e} -\frac{1}{2}\Bigl(  \frac{\pi-e}{e} \Bigr)^2$
したがって,$e \log \pi \ \ (3.1117) \approx \pi -\frac{(\pi-e)^2}{2e}\ \  (3.1086)  > 3$,$\therefore \pi^e > e^3$

2023年11月18日土曜日

三角形(2)

三角形(1)からの続き

半径$r$の円が内接する直角三角形で,円の接点が斜辺を$a,\ b$に分割するものの面積が,簡単な表式 $S=ab$で与えられるので,ピタゴラスの定理を経由せずに幾何学的に説明できそうな気がする。


図:長方形への図形断片の埋め込み

そこで,一辺が$a,\ b$の長方形を対角線で分割した△AQB=$ab/2$に,前回の図における図形の断片がきれいに埋め込めるのではないかないかと思ってトライしてみる。2種類の三角形は底辺の$a, \ b$と高さ$r$をそのままにして頂点の位置をずらせばきれいにおさまる。すなわち,△BCQ=$ar/2$と△ACQ=$br/2$である。

長方形を対角線で分割した三角形△AQBからこれらの面積を除けば,薄い三角形△ABCが余る。したがって,この面積は,△ABC $= \frac{1}{2}\{ab -(a+b)r\}$である。前回の円を内接する直角三角形の面積条件は,$S=r(a+b+r)$だったので,△ABC $= \frac{1}{2}\{(ab -S) + r^2\}$となる。つまり,△ABC =$r^2/2$を満足する場合に$S=ab$となって,断片が長方形に収まることになる。

何だか回りくどい話になって,図形からすんなりと説明できたとはいいにくかった。上の例では,面積を保ったままA→Eに変形すれば,△ABC=△EBCになっているのだけれど,それは特別な場合である。

2023年11月17日金曜日

三角形(1)

三角形の面積を求めるという小中学生向けの問題があったので,ちょっと一般化してみた。逆行進化している自分のレベルにふさわしいかもしれない。

次のような直角三角形OABと内接円Cがあって,斜辺ABと円Cの接点をQとする。与えられているのは,AQとBQの長さであり,このとき直角三角形ABCの面積を求めるのが課題だ。


図:三角形の面積の問題

円の半径を$r$として三平方の定理から$r$の方程式を作れば簡単に解ける。この方程式は次の形になる。$(a+r)^2+(b+r)^2= (a+b)^2$。これを整理すると,$r*(r+a+b) = ab$となる。これから二次方程式の解の公式を使ってモチャモチャしていたのだけれど,その必要はなかった。

三角形OABの内接円の中心CからA,B,P,Q,R点と結ぶ線を切り離して並べ替えると,高さがrで幅が(r+a+b)の細長い長方形ができる。この長方形の面積$ r*(r+a+b)$がもとの三角形OABの面積と等しい。すなわち先ほどの式の右辺である$ab$が答えの面積になるのだった。

2023年11月16日木曜日

相似形

同志社大学田辺キャンパスの交隣館でおにぎりをほおばりながら,Facebookをみていたら,芳賀さんが,盛大に算数の教科書をディスっていた。

教科書にあるのは,相似の例題だ。校舎の高さを影の長さと相似の関係で求めたり,校舎を挟んで立っている2本の木の距離を,運動場の一点から見た角度を測って求めるといった問題だ。目的がその値を求めることなら,屋根から降ろしたロープの長さをはかるとか,学校の設計図面で確認するほうが早いだろうという主張である。みんなで便乗して,算数教育の在り方を批判していた。

そこまで,いじめなくてもよいのにと思ってしまう。自分がこどものときに読んだ「数のふしぎ・形のなぞ」では,ピラミッドの高さの図り方としてこの方法が説明されていた。ピラミッドの横に棒を立ててその影の長さと棒の長さの比を求めておく。ピラミッド頂上の影の長さに相当する距離を測って,先ほどの比を当てはめればピラミッドの高さが推定できるというものだ。

小学校の算数の時間に運動場で測量を行ったときは,確かに角度を正確に求めるのが難しかった。なので,気持ちがわからないこともない。しかし,この方法を理解しておけば,簡単にいろいろな量の概算ができるので,それはそれでよいのではないでしょうか。最も効率のよい方法だけに固執する必要はない。環境次第では,何かの役に立つこともあるかもしれない。

そんなことを考えながら,キャンパスを歩く学生さんを見ていたら,みんな自分の身長の1.3倍くらいの影をずるずる引きずりながら,スイスイ進んでいた。今ごろの太陽高度は南中時刻でも40度はないのだろう。ところが自分の視線の方向を変えると,短くなった影はお団子のように人の後に張り付いていた。そうだ,影を観察する方向によってその見かけの長さを制御できるのだ。

ということで,身長と影の長さが等しくなる方向を選択すれば,ややこしい計算なしに,目標とする高いものの高さがほぼ水平距離に置き換えることができる。それはそれで学びの成果になるだろうか?

図:高さ2の影が4のとき,方向によって長さ2にできる

[1]太陽高度(一日の変化)(CASIO高度計算サイト)

2023年10月20日金曜日

円筒座標のベクトル解析

円筒座標系の基本ベクトルは,$\bm{e}_\rho, \bm{e}_\phi, \bm{e}_z$であり互いに直交している。
$\bm{e}_\rho = \bm{e}_x \cos\phi + \bm{e}_y \sin\phi $, $\bm{e}_\phi = -\bm{e}_x \sin\phi + \bm{e}_y \cos\phi$から,$\dfrac{\partial \bm{e}_\rho }{\partial \phi} = \bm{e}_\phi,\ \  \dfrac{\partial \bm{e}_\phi }{\partial \phi} = - \bm{e}_\rho$ が成り立つ。その他の基本ベクトルの各変数での微分はゼロ。

ここで,$\nabla = \bm{e}_\rho \dfrac{\partial}{\partial \rho} + \bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi}  + \bm{e}_z \dfrac{\partial}{\partial z} $であり,任意のベクトルは,$\bm{A}= \bm{e}_\rho A_\rho + \bm{e}_\phi A_\phi  + \bm{e}_z A_z$とかける。

したがって,円筒座標系での発散や回転は,この演算子とベクトルの内積や外積を機械的に計算すれば良い。ただし,微分演算が基本ベクトルに作用して現れる項があることだけ注意が必要となる。今回は,$\bm{e}_\rho,\ \bm{e}_\phi$を$\phi$で微分する項の存在に気をつける。

発散は,$\nabla\cdot\bm{A} = \Bigl(  \bm{e}_\rho \dfrac{\partial}{\partial \rho} + \bm{e}_\phi \dfrac{1}{r} \dfrac{\partial}{\partial \phi}  + \bm{e}_z \dfrac{\partial}{\partial z}\Bigr) \cdot \Bigl( \bm{e}_\rho A_\rho + \bm{e}_\phi A_\phi  + \bm{e}_z A_z \Bigr)$
余分の項は,$\bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi} \cdot  \bm{e}_\rho A_\rho = \bm{e}_\phi \dfrac{1}{\rho} \cdot  \bm{e}_\phi A_\rho = \dfrac{1}{\rho} A_\rho$である。
$\therefore \  \nabla\cdot\bm{A} = \dfrac{1}{\rho}\dfrac{\partial}{\partial \rho} \bigl(\rho A_\rho \bigr) + \dfrac{1}{\rho}\dfrac{\partial}{\partial \phi} A_\phi + \dfrac{\partial}{\partial z} A_z$

回転は,$\nabla \times \bm{A} = \Bigl(  \bm{e}_\rho \dfrac{\partial}{\partial \rho} + \bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi}  + \bm{e}_z \dfrac{\partial}{\partial z}\Bigr) \times \Bigl( \bm{e}_\rho A_\rho + \bm{e}_\phi A_\phi  + \bm{e}_z A_z \Bigr)$
余分の項は,$\bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi} \times  \bm{e}_\phi A_\phi = \bm{e}_\phi \dfrac{1}{\rho}  \times  (-\bm{e}_\rho ) A_\phi  =  \dfrac{1}{\rho} A_\phi \bm{e}_z$である。
$\therefore \  \nabla \times \bm{A} = \Bigl( \dfrac{1}{\rho} \dfrac{\partial A_z}{\partial\phi}- \dfrac{\partial A_\phi}{\partial z}\Bigr) \bm{e}_r + \Bigl(  \dfrac{\partial A_\rho}{\partial z}- \dfrac{\partial A_z}{\partial \rho}\Bigr) \bm{e}_\phi +  \dfrac{1}{\rho} \Bigl(  \dfrac{\partial (\rho A_\phi )}{\partial \rho}- \dfrac{\partial A_\rho}{\partial \phi}\Bigr) \bm{e}_z $