AINSTEIN: Assessing the Feasibility of AI-Generated Approaches to Research Problems という論文が視界を横切ったので,arxivで探しだしてさっそく読んでもらった。なかなか良いワンステップだ。統計的オウム論者はますます追いつめられていく。ChatGPT-5に読みやすいブログ記事風にまとめてもらった。
Q(koshix):(論文URLの指定)どうおもいますか。A(ChatGPT-5)(回答略)Q(koshix):どういう分野のどんな具体的な問題をいくつ考えさせたのですか。それぞれの問題についての入力データアブストラクト数はどうなりますか。A(ChatGPT-5)(回答前略)以下の11分野クラスタの数字は該当する論文数(重複有)(回答後略)Q(koshix):以上の結果をブログ記事としてまとめようと思います。対象は理工系の学部学生のレベルです。前提となる問題意識をはっきりとさせたうえで,起承転結を明確にして,この論文が何を新規に明らかにしたのかをわかるような,論理的でつながった文章で(箇条書きは控えて)示してください。結局LLMは統計的な鸚鵡ではないのだということでよいですか。A(ChatGPT-5):起:問題意識 ― 「LLMは本当に考えているのか?」生成AI、とくに大規模言語モデル(LLM)は近年、驚くべき成果を次々と示しています。数学の問題を解き、プログラムを書き、論文の草稿まで作ってしまう。それはまるで、AIが人間と同じように「考えている」かのようです。しかし、研究の世界ではこの点に大きな疑問があります。AIの成果は本当に推論の結果なのでしょうか。それとも、訓練データをもとにした「統計的な鸚鵡(おうむ)」にすぎないのでしょうか。この問いは、AGI(汎用人工知能)への道を考えるうえでも、科学研究の自動化という文脈でも、避けて通れない本質的なテーマです。承:方法 ― 「AInsteinフレームワーク」という検証装置今回紹介する論文「AInstein」(ICLR 2025, arXiv:2510.05432)は、この問いに正面から取り組んだものです。研究チームは、AIの“思考”を測るための新しいフレームワークを設計しました。ICLR 2025に投稿された1,214本の論文アブストラクトを素材にして、各アブストラクトから「解法を含まない純粋な研究課題文」を抽出します。これをAIに与え、外部知識には一切アクセスさせず、モデル自身が解法を考えるように仕向けます。さらに、提案された解法はモデル自身と別のモデルによって繰り返し批評・改善されるという“疑似ピアレビュー”を経て評価されました。対象となった課題は強化学習、Transformer設計、拡散モデル(Diffusion)、グラフニューラルネットワークなど、現代のAI研究を代表する11の分野に分類され、それぞれ数百件規模の問題が含まれています。これにより、特定の領域に偏らない、きわめて広範な検証が可能になりました。転:結果 ― 「記憶ではなく、思考の萌芽」実験の結果、最も性能の高いモデル(GPT-OSS-120B)は、全課題に対して約7割の成功率で技術的に成立した解法を提案しました。特筆すべきは、「人間とまったく同じ解法を再発見する率」は15〜20%にとどまる一方で、「人間とは違うが有効な別解」を出したケースが6割を超えたという点です。これは、モデルが単に既知の知識を再生しているだけではなく、問題に対して構造的に新しい方針を立てる力を持ち始めていることを示します。しかもこの傾向は、論文の難易度(Oral/Posterの別)にあまり左右されず、内部の推論能力に強く依存していました。また、モデルが生み出した解法群は、Transformer構造の最適化や拡散モデルのステップ制御、グラフ表現のスケーラビリティ改善など、現代の研究潮流を反映する11のクラスタに自然に分類されました。これは、モデル内部にある種の「研究パラダイム的な構造」が形成されていることを示唆します。結:結論 ― 「統計的な鸚鵡」を超えた段階へこの研究が明らかにしたのは、「LLMは単なる統計的記憶再生マシンではない」ということです。もちろん、まだ人間の科学者のような深い創造性を持っているわけではありません。しかし、問題を構造的に捉え、有効な別解を提示する力を持ち始めていることは確かです。科学の歴史において、発見の多くは「既存の知識の組み合わせ」から生まれました。LLMが示しているのは、まさにその「組み合わせと再構成」の初期段階といえます。したがって、LLMはもはや単なる鸚鵡ではなく、「まだ未熟だが、科学的な思考の萌芽を備えた道具」として位置づけるべき段階に来ています。このことは、AIが科学研究の補助を超え、自律的な研究者として振る舞い始める未来を現実味のあるものにしています。今後は、AIと人間が「知の共創者」として研究の場に並び立つ時代が訪れるかもしれません。
Q(koshix):「これをAIに与え、外部知識には一切アクセスさせず、モデル自身が解法を考えるように仕向けます。」とありますが,一般的なコンピュータサイエンスの専門知識はどうなのですか。A(ChatGPT-5):この実験では、外部のWeb検索や文献データベースといった「外部知識ソース」にはアクセスしない設計になっていますが、モデルの内部に既に組み込まれている一般的なコンピュータサイエンスの知識は利用しています。つまり、「外部記憶」は遮断しても、事前学習で獲得された知識はそのまま活かされている、というのがこの研究の基本的な前提です。(後略)
図:AIんしゅたいん(久々にChatGPTの生成イメージ)











