2025年5月13日火曜日

スイッチインタビュー


NHKのスイッチインタビューは,異なった分野の二人のスペシャリストが2回に分けて攻守を交替して互いをインタビューする番組だ。5月2日と9日に放映された「角野隼斗×山下真由子」では,東大工学部計数工学科の同級生だったピアニストの角野隼斗 と 代数トポロジーの山下真由子 の対話で,なかなか見ごたえがあった。

第二回で,この宇宙に別の知性体が存在したときに人類と同じ数学をつくりだすかどうかという話になった。角野はそうなると考えて質問していたのに対し,山下は違うものになるのが当然だと強く考えているところがちょっと驚いた。自分は,この宇宙に共通する自然法則に内在されている数学性がなんらかの形で表現されるのだから,たぶん理解可能な対応関係はあるに違いないと思っている。

黒板で山下の仕事を説明する部分のノーカット版が,30分ほどのスペシャルコンテンツとして番組のホームページに上がっている。これにおおむね対応するプレゼンテーションがあったので,Gemini 2.5 Proに与えて日本語の解説文を作ってみた。

Q(koshix):
(Topological Modular Forms and heterotic string theory の29pのプレゼンファイルを添付)
このプレゼンテーションの内容を,文脈を補完しながら,日本語でできるだけわかりやすく,ていねいに,説明してください。読者対象は,理工系の大学院修士課程の学生です。

A(Gemini 2.5 Pro):
(回答略)


Q(koshix):
ありがとうございました。対象を理工系の学部学生レベルにして,高度な専門用語については,簡単な解説をしながら,雑誌の丁寧な解説のような形でもう一度まとめてください。(以下,要約の真正性は保証されていないことに注意

A(Gemini 2.5 Pro):
数学と物理学の架け橋:位相的モジュラー形式と弦理論の不思議な関係

私たちの宇宙は、どのような法則で成り立っているのでしょうか?この根源的な問いに、物理学者は「弦理論」という革新的な理論で迫ろうとしています。弦理論は、物質の最小単位を点ではなく振動する「弦」と考えることで、自然界の基本的な力を統一的に記述しようとする壮大な試みです。

一方、数学の世界には「ホモトピー論」という分野があります。これは、図形を連続的に変形させたときに保たれる性質を研究する、いわば「やわらかい幾何学」です。一見すると、弦理論とホモトピー論は全く異なる世界の探求のように思えるかもしれません。

しかし、京都大学の山下真由子氏らの研究は、これら二つの分野が驚くほど深く結びついている可能性を示唆しています。本稿では、山下氏のプレゼンテーションに基づき、そのエキサイティングな研究の一端を、理工系の学部生の皆さんにも分かりやすく解説します。

発端は「シーガル・シュトルツ・タイヒナー(SST)予想」
今回の物語の中心となるのは、「シーガル・シュトルツ・タイヒナー(SST)予想」と呼ばれる、数学と物理学の接点に関する大胆なアイデアです。この予想は、大まかに言うと、ある種の物理学の理論(専門的には「2次元N=(0,1)超対称性を持つユニタリ場の量子論(SQFT)」と呼ばれます)が、数学の特殊な対象である「位相的モジュラー形式(TMF)」というものと、本質的に同じものであると主張しています。

少し言葉を補足しましょう。

場の量子論 (Quantum Field Theory, QFT):素粒子や力を「場」(空間の各点に物理的な量が対応するもの)の言葉で記述し、量子力学のルールを適用する理論です。私たちの世界の基本的な法則を記述する上で非常に成功しています。
超対称性 (Supersymmetry, SUSY):自然界に存在する粒子(フェルミ粒子とボーズ粒子)の間になりたつかもしれない対称性です。この対称性があると、理論が扱いやすくなったり、未発見の粒子を予言したりします。N=(0,1)というのは、超対称性の「量」を表す添え字です。
位相的モジュラー形式 (Topological Modular Forms, TMF):これは高度な数学の対象で、「モジュラー形式」という数学の重要な関数の「位相的」なバージョン、つまり図形の変形に強い性質を持つように一般化したものです。モジュラー形式自体、数論や幾何学、そして弦理論にも現れる重要な対象です。

SST予想がもし正しければ、物理学の問題をTMFという数学の言葉で考えたり、逆にTMFから物理学の新しいアイデアを得たりすることができるようになります。まさに、数学と物理学の間に新しい橋を架けるようなものです。

SST予想の使い道:物理の問題を数学で解く
山下氏らの研究は、このSST予想を実際に使って、物理学の難問に取り組んでいます。その一つが、「ヘテロティック弦理論のアノマリーの消失」という問題です。

ヘテロティック弦理論:弦理論にはいくつかのバージョンがありますが、その中でも特に現実世界を記述する候補として注目されているものの一つです。
アノマリー (Anomaly):物理学の理論を構築する際、古典的な理論では保たれているはずの対称性が、量子効果(ミクロな世界で重要になる効果)を考慮すると破れてしまうことがあります。これをアノマリーと呼びます。アノマリーがあると、理論が自己矛盾を起こしてしまうため、物理学的に意味のある理論であるためには、アノマリーがうまく打ち消されている(「消失する」と言います)必要があります。

山下氏らは、SST予想と、それに関連する「Freed-Hopkinsの予想」という数学と物理学を結びつける別の予想を駆使しました。これらを用いることで、ヘテロティック弦理論のアノマリーの問題を、TMFという数学の対象に関する問題に「翻訳」し、数学的な手法で見事に解決できることを示したのです。つまり、「ヘテロティック弦理論はアノマリーを持たず、矛盾のない理論である」ということを、数学の力で裏付けたことになります。

SST予想から物理へ:TMFが持つ不思議な周期性
SST予想は、物理から数学への視点だけでなく、数学から物理への新たな洞察ももたらします。TMFは、そのホモトピー群(TMFの「穴」の構造を調べる数学的な道具)に「576周期性」という顕著な性質を持つことが知られています。これは、ある種の計算結果が576番ごとに同じパターンを繰り返す、という不思議な性質です。

山下氏らは、このTMFの周期性が、超対称場の量子論(SQFT)にも対応する現象として現れることを、TMFを使わずに(つまり、より直接的な物理的考察から)証明することにも取り組んでいます。  これは、数学の世界で見つかった抽象的な性質が、実は物理現象の背後に隠された法則を示唆している可能性を示しており、非常に興味深いアプローチと言えるでしょう。

副次的アノマリーとTMFの自己双対性
さらに進んで、[TY '23]の研究では、「副次的アノマリー」という、より精密なアノマリーの概念と、TMFの「アンダーソン自己双対性」という数学的な性質との間に深いつながりがあることを見出しました。  これは、TMFが弦理論のアノマリー構造を驚くほど詳細に捉えていることを示唆しています。また、この研究は「頂点作用素代数(VOA)」という、2次元の場の量子論や弦理論で中心的な役割を果たす代数構造とTMFとの間の具体的な関係性にも光を当てています。

まとめ:数学と物理学の対話が拓く新しい地平
山下氏らの研究は、位相的モジュラー形式(TMF)という、一見すると非常に抽象的な数学の対象が、ヘテロティック弦理論のアノマリーという物理学の具体的な問題を解く鍵となったり、さらには場の量子論の新たな性質を予見したりすることを示しています。

SST予想という大胆なアイデアを羅針盤として、数学と物理学という二つの広大な知の海を探求することで、これまで見えなかった新しい景色が広がりつつあります。理工系の学部生の皆さんも、専門分野の垣根を越えたこのような研究に触れることで、科学の奥深さと、異なる分野が協力することで生まれる新しい発見の可能性を感じていただければ幸いです。


Q(koshix):
読者対象を理論物理学を専攻する学部学生のレベルまであげて,その知的好奇心を刺激するようなレベルの丁寧で詳しくわかりやすい解説にしてください。必要な専門用語は省略せず,さらに進んだ学ぶためには,なにをどのように学ぶかのヒントもあるとよいです。
A(Gemini 2.5 Pro):



写真:スイッチインタビューのおまけ画像(NHKから引用)


0 件のコメント: