中間まとめ
いろいろと書き散らしてきたので,ここまでに得られた結果を整理してみる。
感染症の数理シミュレーション(3)において,感染対策時間因子を修正した図1のSIIDR2モデルで,湖北省(武漢以外)の新規感染者数累計と死亡数累計を説明できるパラメタセットを得ることができた。
図1 SIIDR2モデルの概念図,n=u1+u2+u3+u4+u5, p+q=1
S:du1dt=−β(t)nu1u2I1:du2dt=β(t)nu1u2−u2α1−u2α2I2:du3dt=u2α2−u3γ1−u3γ2D:du4dt=u3γ2R:du5dt=u2α1+u3γ1Ia:du6dt=u2α2β(t)=β15{8+7tanh(−t−τλ)
湖北省(武漢以外)のデータを再現するパラメタセットは以下のとおりであり,これを用いたシミュレーション結果は図2のように与えられる。
α1=5/0.80,α2=5/0.20=25, β=0.915, γ1=15/0.96,γ2=15/0.04=375, λ=τ=7,ν=0.025,u2が軽症感染者数(発症無),u3が重症感染者数(発症有),u2α2が新規重症感染者数f(t),u3γ2が新規死亡数h(t),u4が死亡数累計i(t)=∫h(t)dt,u6が新規重症感染者累計g(t)=∫f(t)dt,である。WHOで報告されているデータ[1]では,感染者累計(Confirmed)がg(t),死亡数累計(Deaths)がi(t)に対応している。
図2 湖北省(武漢以外)のSIIDR2モデルによるシミュレーション
(○はConfirmedとDeathsの観測値,WHOとtencentニュースサイトのデータ)
半分パラメタフィッティングなので,ν,τ,λを調整して勝手に象の鼻を描いている感は否めないのが微妙なところである。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
using DifferentialEquations
using ParameterizedFunctions
using Plots; gr()
sky = @ode_def SIIDR2_model begin
du0 = 1 # u0:time
du1 = -β/15*(8+7*tanh(-(u0-τ)/λ))*u1*u2/n # u1:Noimmunity(Susceptible)
du2 = β/15*(8+7*tanh(-(u0-τ)/λ))*u1*u2/n -u2/α1 -u2/α2 # u2:Mild(Infected-a)
du3 = u2/α2 -u3/γ1 -u3/γ2 # u3:Serious(Infected-b)
du4 = u3/γ2 # u4:Dead
du5 = u2/α1 +u3/γ1 # u5:Recovered
du6 = u2/α2 # u6:Accumulated Infected-b
end n α1 α2 β γ1 γ2 λ τ
function epidm(β,ν,λ,τ,T)
n=10000.0 #total number of population
α1=5.0/0.80 #latent to recovery (days/%)
α2=5.0/0.20 #latent to onset (days/%)
#β=0.45 #infection rate (/day・person)
γ1=15.0/0.96 #onset to recovery (days/%)
γ2=15.0/0.04 #onset to death (days/%)
u0 = [0.0,n-11ν,4ν,2ν,0.0,5ν,ν] #initial values
p = (n,α1,α2,β,γ1,γ2,λ,τ) #parameters
tspan = (0.0,T) #time span in days
prob = ODEProblem(sky,u0,tspan,p)
sol = solve(prob)
return sol
end
β=0.915 #infection rate
ν=0.025 #inital value of accumulated infected-b
λ=7 #pandemic supression range (days)
τ=7 #pandemic supression start (day)
T=40 #period of simulation
xc=[0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48]
yc=[0.003,0.03,0.23,0.67,1.27,2.00,2.52,2.88,
3.44,3.58,3.71,3.69,3.71,3.71,3.71,3.71,3.71]
zc=[0.0,0.0,0.0,0.01,0.02,0.03,0.04,0.05,
0.07,0.09,0.10,0.11,0.11,0.12,0.12,0.13,0.13]
# kohoku-bukan model
# β=0.915,ν=0.025,λ=7,τ=7,α2=5.0/0.20,γ2=15.0/0.04
@time so=epidm(β,ν,λ,τ,T)
#plot(so,vars=(0,2))
plot(so,vars=(0,3))
plot!(so,vars=(0,4))
plot!(so,vars=(0,5))
plot!(so,vars=(0,6))
plot!(so,vars=(0,7))
plot!(xc,yc,st=:scatter)
plot!(xc,zc,st=:scatter)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[2]新型環状病毒肺炎疫情動態(tencentニュースサイト)
[3]新型コロナウイルス感染症対策専門家会議(第5回)(3月2日)
[4]特設サイト:新型コロナウイルス(NHK)
[5]新型コロナウイルス感染速報(Su Wei)
[6]Coronavirus Disease (COVID-19) – Statistics and Research(Our World in DATA)
[7]Databrew's COVID-19 data explorer(Databrew)
[8]COVID-19情報共有(佐藤彰洋)
[9]時間遅れを考慮した確率 SIR モデルの安定性解析(石川昌明)
[10]分布的時間遅れをもつ確率感染症モデルの安定性解析(石川昌明)
P. S. [6]のように,プロがシミュレーションをすると遅延SIRモデルみたいなことになるのか。感染率にステップ関数を導入しているので鋭い構造が出現しているようだ。遅延確率SIRモデルになるとちょっとついていけません(3/17/2020)。
感染症の数理シミュレーション(9)に続く
0 件のコメント:
コメントを投稿