2020年3月17日火曜日

感染症の数理シミュレーション(9)

感染症の数理シミュレーション(8)からの続き

湖北省(武漢以外)を説明するSIIDR2モデルができたので,これを用いて典型的な2つのイメージを定量化して表現してみたい。以下の計算ではモデルを単純化して特徴を表わすために,感染確率の$\beta$は一定だと仮定する。なお,次のパラメタは固定しておく($\alpha_1=\dfrac{5}{0.80}, \alpha_2=\dfrac{5}{0.20}, \gamma_1=\dfrac{15}{0.96}, \gamma_2=\dfrac{15}{0.04}$)。また,重篤な患者に対して必要な設備(病床)数を,発症して隔離されている感染者数$u_3$の$\dfrac{1}{20}$と想定する。これは,厚生労働省の専門家会議における「新型コロナウイルス感染症の流行シナリオ」に準拠している。

A.短期集団免疫シナリオ
SARS-CoV-2の感染者が完全に免疫を獲得できるのかどうかがよく知らないのだけれど(まれに再感染するのか,単なる変異したウイルスへの感染か),英国のジョンソンドイツのメルケルが,国民の6〜7割が感染する可能性について言及しているようだ。果たしてそれが可能なのだろうか。SIIDR2モデルで$\beta=0.6,\ \nu=0.01,\ \lambda=10000,\ \tau=0,\ T=180$とする。$\lambda$を十分大きくとったのは$\bar{\beta} \approx \dfrac{8}{15}\beta$(一定)になるようにするためだ。


図1 短期集団免疫シナリオ(1万人当り)

グラフの基点は新規感染者累計が人口の1ppmに達した時点であり,感染者が増大している多くの国では条件を満足している。日本に当てはめると,ピークは3〜4ヶ月後(5〜6月)$u_1$:未感染数,$u_2$:軽症感染数(含む未発症),$u_3$:重症感染数(ピーク時400万人),$u_4$:死亡数(終期は60万人),$u_5$:免疫獲得回復数(終期は7000万人),$u_6$:重症感染数累計(終期は1400万人)である。したがってピーク時の重篤用必要設備(病床)数は20万床となり,完全に国内のキャパシティを越えてしまうものと思われる。当然オリンピックは不可能だ。

B.ピークシフトシナリオ
医療崩壊の本質は,PCR検査の数の問題でも,病床数の問題でもなく,重篤患者に対応するための設備と医者の数の問題であるといわれている。日本の厚生労働省がNHKを通じて広めている図も,ピークを低くしてその頂上の位置を先送りにする必要があるというものだった。SIIDR2モデルで$\beta=0.42,\ \nu=0.01,\ \lambda=10000,\ \tau=0,\ T=750$としたものが次の図である。図1とスケールのオーダーやファクターが違うことに注意しよう。

図2 ピークシフトシナリオ(1万人当り)

感染数のピークは10〜16ヶ月後,$u_2$:軽症感染数(含む未発症)(ピーク時50万人),$u_3$:重症感染数(ピーク時30万人),$u_4$:死亡数(終期は10万人),$u_6$:重症感染数累計(終期は300万人)である。したがってピーク時の重篤用必要設備(病床)数は1.5万床となり,かろうじて対応できるのかもしれないがよくわからない。大きな問題は2年にわたる長期の対応が必要なことである。ピークシフトを考える場合は,感染率$\beta$の抑制策との合わせ技が必須だ。

[1]ピークカット戦略(集団免疫戦略)地獄への道は善意で舗装されている(Sato Hiroshi)

0 件のコメント: