2023年8月22日火曜日

教育と倫理(6)

教育と倫理(5)からの続き

小学生のころ道徳の時間はもっとも苦手だったのに,高校の倫理は最も真剣に授業をうけていた。そんなわけで,倫理という言葉にはなぜか過剰反応してしまうのかもしれない。

そもそも教育基本法がよくないのである。2006年12月,第一次安倍政権で公布された改正教育基本法だけではなく,戦後まもない1947年3月に公布された教育基本法もである。

教育基本法の第1条が教育の目的であり,改正前後とも「教育は、人格の完成を目指し(めざし)」となっている。改正によって前文を含めてこのあたりも微妙に日本国憲法の精神や歴史を切り離すような改変が加えられたという問題もあるのだが,そもそも人格の完成のところで自分の違和感メータが振り切れるのであった。

人格とは?それは完成するものか。それは目指すべきものか。いきなり疑問符があふれ出す。自分の中で人格という言葉とその周辺に形成されている意味群が標準的ではないからなのかもしれない。人格者=偽善者じゃないんですか。人格が完成した大人を見たことがありますか。人格=心理学のパーソナリティではないですよね。などなど。

それ以上は真面目に調べていなかったのだけれど,教育基本法の成立過程でもかなりの議論があったようだ。そもそも教育基本法における人格は心理学的概念ではなくて哲学的概念である


文部科学省にある,昭和22年教育基本法制定時の経緯等に関する資料によれば,教育刷新委員会による教育基本法案要綱案(1946年11月29日)では,教育の目的として「教育は、人間性の開発をめざし、」となっていた。

これを審議した教育刷新委員会の第一特別部会のメンバーは,芦田均羽渓了諦天野貞祐務台理作関口鯉吉森戸辰男河井道島田孝一であった。当初の8月から9月の文部省案には人格の完成という言葉があったが,教育刷新委員会における議論の末にこれは人間性の開発に変更された。

ところが,1947年3月の文部省最終案では,人格の完成に戻ってしまっている。これには時の文部大臣の田中耕太郎の意志が大きく働いている。田中はカトリックの法哲学者で後に最高裁判所の長官をつとめている。

宮村悠介[1]によれば,
なお,田中はカトリックの自然法論を思想的背景としており,「人格」の理解にも宗教的な色合いが濃い.つまり「人格の概念」は,人間が「自己の中にある動物的なものを克服して,神性に接近する使命を担っていることを内容とする」のであり,「人格の完成」も,人間を超える完全な人格の模範を必要とするから,「超人間的世界すなわち宗教に求めるほかはない」.今日の教育基本法の「人格の完成」という表現の背後には,こうした宗教的な人格理解がある.
また,山口意友[6]によれば,
人格は自由と分離すべからざる関係にある。人間が本能、衝動、情欲等を制御克服し、道徳的に行動する場合において、自由であり、自主的である。・・・以上のべたところによって人格は、教育基本法第一条の前身ともいうべき教育刷新委員会の建議中にいわれている「人間性の開発」の人間性と同じ意義のものではないことがわかる。・・・人間性の開発という表現は現実の人間性を意味するものと誤解される懸念があるから、人格の完成を以て一層適当とするのである。(田中耕太郎『教育基本法の理論』72~78頁参照)
というわけだ。さらに,
このように人格の完成という目的達成のためには、道徳的自由、すなわち意志の自律の存在が必須となるのです。さらにカントは、『単なる理性の限界内における宗教』という著作の中で、人間の素質を、①「生物としての人間の動物性の素質」、②「生物であると同時に理性的な存在者としての人間性の素質」、③「理性的であると同時に引責能力のある存在者としての人格性の素質」の三つに区分します。ここで示された三つの素質は、教育基本法における教育の目的が「人間性の開発」ではなくて「人格の完成」となった理由を理解するには有用です。恐らく田中耕太郎もカントのこの3区分を知っていたのではないかとも考えられます。
このように,ある教育の目的が「人格の完成」だということは,その教育の本質が道徳教育だと表明していることに他ならない。だから,教育基本法改正で細かな外堀が全部埋められたことを問題にする以前に,そもそもの出発点がおかしかったのである。

いや,もちろんおかしくないという意見もあるのだろう。AIアシスタントの時代に,教育の本質として要請されるのは,再定義された道徳教育=市民教育以外にはないのかもしれない。とすればなおさら人格の完成という言葉は馴染まないし使いたくないものだ。


追伸:単純にいえば,"Education is the transmission of knowledge, skills, and character traits. " (Wkipedia)なのだ。なお,道徳教育(3)における我流の教育の定義ではキャラクター≒性格のことは全くふれていないかった。それは教育という意識的な伝達過程を経るべきものなのだろうか。

追伸2:そうか,田中耕太郎は,砂川事件の最高裁裁判長だったのか。もう最悪ですね。日本の戦後教育の出発点はこんなところにあるのだった。

[2]教育基本法資料室へようこそ(文部科学省)
[5]「人格の完成」の思想的含意(田中智志)


2023年8月21日月曜日

教育と倫理(5)

教育と倫理(4)からの続き

デジタル技術によって生徒や学生の学習活動情報が容易に取得できるようになった。例えば,LMSへのアクセス情報,資料の参照ページ情報や,教材動画の視聴情報などである。それだけではなく,CBTにおける視線情報などが考えられるが,このような身体的情報についてはさらに可能な範囲がひろがる。

身体的情報として,脈拍や体表面温度,手や身体や頭の動作運動情報などもセンサーで取得できるだろう。さらに下手をすると,尿や血液の化学成分とか脳波情報にまで至るかもしれない。それが学習支援につながるかどうかは仮説と検証の結果次第である。

これまで生徒の発話情報や動作情報は,教員が直接に見聞きして確認できていた。そこまでは問題ないが,それを録音や録画する場合には許諾が必要かもしれない。これらは生徒が意識的に制御できる身体=言語情報だ。ところで上記にあげたような,学習場面において自分が意識で制御できない身体的情報の取得はそもそも倫理的に許されるのだろうか。

個人情報保護法と同じような原則で考えれば良いのかもしれない。「目的明示の原則」「利用範囲の原則」「収集過程の原則」「真正情報の原則」「情報保護の原則」「過程公開の原則」「個人参加の原則」「管理責任の原則」がその基本原則である。
目的明示の原則
 個人情報を収集する際には,その利用目的を明確にし,その目的の範囲内でのみ情報を使用する。不必要な情報を収集しないよう努めることも含まれる。
利用範囲の原則
 収集した個人情報は,事前に明示または公表した利用目的の範囲内でのみ使用し,その目的外での利用や第三者への提供は原則として行わない。
収集過程の原則
 個人情報は,適切な方法で,利用目的を達成するために必要な範囲内で収集する。不正な手段や偽りの手段での収集は禁止される。
真正情報の原則
 収集した個人情報は,利用目的を達成するために必要な正確性と最新性を持つように努める。不正確な情報は適切に訂正や削除を行う。
情報保護の原則
 個人情報は適切に管理し,不正アクセス,紛失,破壊,改ざん,漏洩などのリスクから保護するための措置を講じる。
過程公開の原則
 個人情報の取扱いに関する方針や手続きを公開し,透明性を確保する。また,収集した情報の内容や利用目的などを適切に開示する。
個人参加の原則
 個人が自らの情報にアクセスしたり,訂正や削除を求めることができるような仕組みを提供する。これにより,情報の正確性や適切な利用を保証する。
管理責任の原則
 個人情報の取扱いに関する責任を組織全体で負う。組織のリーダーや管理者は,適切な管理や教育を行い,情報の適切な取扱いを確保する。
やはり個人参加の原則あたりがポイントかもしれないが,テクニカルな問題に帰着する。

そういえば脳波は40年以上前に,理科教育の松本勝信先生がやっていたのだった。一番センシティブなのは脳波かと思っていたら,すでにそれを使ったアプリまであった。例えば,脳波を用いた学習者のモーティべーションの可視化のようなもの。

[2]FocusCalm
[3]Muse2・・・瞑想フィードバック,ちょっと違う?

2023年8月20日日曜日

教育と倫理(4)

教育と倫理(3)からの続き

仲矢さん自身が,「もし居眠りするのであれば,それはその人に居眠りする理由が存在するのだ」として,居眠り検出器であることを否定しているのだが,一般には個人を特定した居眠り検出器のようにみられている。立ち歩きなどの問題行動検出器だとは説明しにくいし,実際それが授業支援に役立つというのは理解しにくいだろう。

そこで「これ国会で使ってください」という皮肉なコメントがつくことになる。


中学校時代の国語の教生の先生で,学期にわたってクラスに入ってくれた方がいた。度のきつい眼鏡をかけた先生だったが,もう名前も忘れてしまった。彼女が,授業を始める前に最初に全員に向かって話したのが,「私は寝ている生徒がいても起して叱ることはありません」ということだった。それぞれの生徒には色々な事情があって,授業中に眠ってしまうことがあるかもしれないけれど,それは認めますということだ。中学3年の東京修学旅行の最後の訪問地が羽田飛行場で,すでにやめていたその先生が久しぶりにみんなに会いに来てくれていた。


一方,豊福さんの原理主義的な主張もなかなかハードルが高い。インフォームドコンセントまではよいけれど,はたしてデータハンドリングを学習者当事者に任せることが可能なのだろうか。

テキストデータとしての学習履歴などは可能だと思うが,センサーから取得した生データのようなものはどうなるのだろうか。一律ONとOFF以外のケースはなかなか面倒なことになりそうだし,データの完備性は損なわれざるを得ない。

教育という営みの非対称性は認めるにしても,完全にイーブンな形は想像しにくい。それは,これまでの古い教育観に完全に染まった自分に学習者視点が欠けているからかもしれないし,あるいは過度なポリティカルコレクトネスのようにも思う。芦田宏直さんならまた別の物語を展開するだろう。

2023年8月19日土曜日

教育と倫理(3)

教育と倫理(2)からの続き

もう一度出発点に立ち戻ってみる。仲矢さんがこのシステム開発を始めたのは,同じ大阪教育大学の庭山和喜さんの研究がきっかけになっている。

その論文は,2020年度の日本教育心理学会の城戸奨励賞を受賞した,「中学校における教師の言語賞賛の増加が生徒指導上の問題発生率に及ぼす効果 ―学年規模のポジティブ行動支援による問題行動予防― 」である。公立中学校2年生を対象として,授業中の教師の言語賞賛回数の増加によって,生徒の授業参加行動が促進されることで, 相対的に問題行動は減少するのかについて検証したものだ。

その問題行動というのが居眠りではなくて,「授業中に複数の生徒が立ち歩いたり,離れた席の生徒間で私語をしたり,物を投げたりといった様子が観察されていた」というレベルのものであり,研究のためにはこれを定量的に記録する必要があったのだ。

ただし,研究遂行上の作業負荷としては,教員の言語称賛回数の記録の方が大きいので,教員の発話を全て記録してこれを分析するシステムを開発するほうが有効だったような気がするが,そのあたりの事情はわからない。

ともかく,このサーマルカメラAIシステムを分かりやすく説明するために居眠りの例を持ち出したため,話が面倒になっている。そもそも,研究段階では立ち歩く生徒数の定量的に把握することは意味があるのだけれど,これを一般に利用される授業支援システムとして考えるというのはどうもしっくり来ない。

(1) 一般論として,隠れたデータの可視化が授業改善に資することはあるだろう。
(2) サーマルカメラAIシステムは研究目的では有効な場合があると思う。
(3) しかしこれを常時使用することで授業改善につながるとは考えにくい。
   検出される問題行動は定量化以前の課題として教員に認識されているからだ。
(4) むしろ教室の常時監視状態を実現することが及ぼす影響のほうが気になる。
(5) これが生徒もしくは教員のパフォーマンスの評価に用いられる危険性は高そうだ。

庭山さんの論文の最後は次のようになっている。
また本研究では,問題行動の指標として,学校現場で日常的に記録されている生徒指導上の問題の記録をデータ化して用いた。これは,問題行動予防のための取り組みの成果を,学校現場内で常にモニタリングするために有効かつ比較的低コストなデータ収集方法である。児童生徒の問題行動予防のための効果的な取り組みが求められる中で,今後は学校内で日常的に運用可能なデータ収集システムを確立し,問題行動を予防するための組織的支援の効果について,実践研究を積み重ねていく必要がある。
これが影響したのかもしれないが,本質は個人ごとのテキスト形式ワークシートの共有化なので,今回の匿名化されたサーマルカメラAIシステム的なデータのことではないはずなのだけれど。

2023年8月18日金曜日

教育と倫理(2)

教育と倫理(1)からの続き

そこで次のような問いを,最近バカになってきているとあまり評判が芳しくないGPT-4(August-3)に投げてみてた。

Q:User
教室全体の様子を赤外線カメラにおさめて,学生や生徒が居眠りしているかどうか(個人までは識別しない)をAIによって(深層学習システムを用いて)画像解析し,これを授業改善に結びつけるシステムの開発に成功したという教員養成系大学の研究グループからの発表がありました。

これに対して,賛否両論があって議論が盛り上がっています。教育工学あるいは教育倫理学の立場から,このシステムの可能性をどのように評価すべきでしょうか。あるいはどのような問題点を抱えているでしょうか。具体的に箇条書きによって解説してください。
 
A:ChatGPT
このようなシステムには確かに多くの可能性がありますが、同時に多くの問題点も考慮する必要があります。教育工学や教育倫理学の視点から考慮すべきポイントを以下に箇条書きでまとめます。

可能性

1. 授業改善:生徒の反応をリアルタイムでキャッチすることで、教師が授業の内容やペースを調整する手助けとなる。

2. データ駆動の教育:長期的なデータ分析により、特定のテーマや時間帯に生徒の興味が低下する傾向などを発見できる。

3. 個人情報保護:個人を識別しないシステムであれば、プライバシーの懸念が少なくなる可能性がある。

問題点

1. プライバシーの侵害:個人を識別しないとしても、生徒の行動を監視することはプライバシーの侵害と見なされる可能性がある。

2. 圧力とストレス:このようなシステムが導入されると、生徒が常に監視されていると感じることでストレスを感じる可能性がある。

3. 評価基準の偏り:居眠りをする生徒が授業に興味がないとは限らない。体調や前夜の睡眠不足など、多くの要因が考慮されるべきである。

4. 技術的誤検知:AIの誤検知や技術的な制約により、正確なデータが得られない場合が考えられる。

5. 教育の本質:授業の質を生徒の居眠りの有無で判断することは、教育の本質から逸脱する恐れがある。

6. 倫理的な問題:教育現場での技術導入は、その目的や手段が明確である必要があり、適切なガイドラインや枠組みのもとで行われるべきである。

以上のように、このシステムの導入には様々な側面が考慮される必要があります。教育現場での技術の利用は、その利点とリスクを十分に評価し、関係者全員の合意のもとで慎重に進めることが求められます。

2023年8月17日木曜日

教育と倫理(1)

ことの発端は,8月3日の大阪教育大学の記者発表である。

その内容は,サーマルカメラのAI画像分析によって,生徒の活動状況(寝ているかどうか等)を判別して授業改善に利用しようというものだ。NHKの関西版ニュースにも「授業中の居眠りをAIで検出,大阪教育大学がシステム開発」として取り上げられていた。このご時世なのでなんであれ,大学がニュースに取り上げられるのは結構なのですが・・・。

さっそく反論があった。最も本質的なものの一つが,豊福晋平さんのFacebookのコメントツリーの中にある彼自身の発言だ。
テクノロジーは道徳のない増幅機である
学習者の学びを支えたいのか、それとも、相手の行動を好き勝手にコントロールしたいのか、テクノロジーは人の欲望をグロテスク化させる。 
この事例は開発者のかなりアレな学習観を暴露していて痛快ですらあるのだが、もっと踏み込んで言えば、大学広報として公式に扱う以上、組織の教育・学習観も所詮その程度のものということだ。

・・・途中のレスにもあったように、彼らの価値観は教師主導の授業改善がベースで(朝日新聞にはそう説明したんでしょう)、実はそこにあるデータ所有の非対称性や恣意的な解釈・権威付けが批判されているのに、それに気付けない。問題はそこにあります。

研究だから何でもイノセントでよいわけではなく、その背景や価値の方向付けにはこと自覚的であるべきで、倫理的・社会的にそれが許容されるのか否かについては余計に慎重であらねばならない、ということですね。 

これはぜひ覚えておいて欲しいのですが、学習者視点の欠如はかなり深刻な問題です。

データの取得・分析・フィードバックが学校のような非対称の関係性のなかで行われれば、インフォームドコンセントの欠如、データの強制取得、データの恣意的運用による不利益が生じる可能性があります。これはテストデータや学習履歴についてもまったく同じです。

学習者側の直接的なメリットがあること、データハンドリングを学習者当事者に任せることが条件になると思います。一方的にデータを吸い上げて授業改善は理由になりません。


一方,その他の様々な批判に対してFacebookの仲矢史雄さんは次のように語っている。
教育改革は教師だけの責任にしたり、学生の努力不足と決めつけてはならない。
本当に改善を進めるためには、客観的な観察と記録が必要で、これは細部にわたる長時間の作業を要求する。 
これまでは人間がその役割を担ってきたが、その作業負荷は大きすぎた。
現代の技術を活用して、これらのプロセスをデータ化することが望まれていた。
それは表面的な応用ではないという理解が必要だ。 
だれが特に居眠り検出装置のような短絡的な目的のためにこれを作るのだろうか。もし居眠りするのであれば、それはその人に居眠りする理由が存在するのだ。しかし、今回の取組が報道によって、分かりやすい部分だけ切りとられることは、メディアの性質として避けられない現実。 
もし私たちのプロジェクトがそのような切り取り方で紹介されることを嫌がるのであれば、情報を公開しなければいい。しかし、新たな取り組みが他の人々に利用されるためには、予想外の解釈をされる可能性を理解した上で、腹をくくって情報を公開しなければならない。道のりは遠い。

お二人ともを良く知っているだけになかなか考えさせられる。

仲矢さんは昔から附属で表情分析システムのようなことをやっていて,そのころの自分は深く考える前に「なかなか面白いですね」と応援していた。ただ,今回のシステムがどれほど価値があるのかはよくわからない。日立の研究者によるウェラブルセンサーによる長時間動作解析の可能性については,何年か前に読んだことがあって,たいへん面白いと思ったことがあるのだが。

自分が40-200人規模の大学の授業で「サーマルカメラシステム」を使えるとなったときに,果たして使うだろうか。居眠りしているかどうかは学生をみればわかる。授業のどの場面で集中が切れるかを細かく分析してなくとも,ある程度は直感的に全体像をつかみながら,テーマの選択や話の展開の改善にはぼんやりとつなげていた。いらないかな。

これがウェラブルセンサーであって,普通は見えにくい学生の活動情報を収集できるというのであれば,ちょっと面倒だが試そうと思ったかもしれない。しかしその場合,取得データを評価と結びつけたいという誘惑から逃れる自信はない。さらに,自分が大学管理者の側に立ったときに,これを教員の教育評価と結びつけようと積極的に主張し始めるかもしれない。地獄に続く道への第一歩。

豊福さんの「テクノロジーは人の欲望をグロテスク化させる」というのは自分に当てはめてみるとよくわかる。

2023年8月16日水曜日

空間ID

空間IDとは,経済産業省が整備を進めているデータ規格で特定の場所や地物情報を一意に識別するための識別子だ。

現実の空間を「ボクセル」と呼ばれる3次元空間を直方格子状に分割した直方体で区切り,その一つ一つに,地理的な座標や静的な情報(建物や設備データなど),動的な情報(気象情報や人流データなど)を紐付けた固定のIDを付与することで,特定の空間の情報を一意に識別する。

ボクセルのサイズを1辺50cmの立方体とする。日本の面積が37万㎢で,海まで含めてその3倍の面積100万㎢を考え,高さ9km深さ1kmの体積を考えると,10^7立方キロメートル= 10^16㎥なので,ボクセルでいうと,10^17ボクセルになり56ビットで表現できる。

でも実際はそんな単純なスキームではなくて,もう少しややこしいことになっているようだ。一方,総務省はG空間というものを提起していたけれどどうなのか。

2023年8月15日火曜日

ビジネスと人権

7月24日から8月4日まで,国連連合人権理事会による「ビジネスと人権」ワーキンググループの訪日調査が行われた。

最終日に日本記者クラブで記者会見が行われた。70分の説明の後,30分ほどの質疑応答があったけれど,申し訳程度に1件だけダミーの質問があった以外は,すべてジャニーズ事務所セクシャルハラスメント問題に費やされていた。なんなのだろう。

実際には,訪日調査の速報は下記引用部のような配分になっていた。()内は当該節の文字数である。

つまり,ジャニーズ問題より多くの部分が,技能実習生制度(雇用主による度重なるヘイトスピーチなど,韓国人・中国人労働者に対する外国人差別の事例を含むや,自然環境=東京電力福島原発の廃炉作業に関わる多重下請けと強制労働の問題に費やされていた。さらに,福島原発の処理水の排出と米軍基地周辺におけるPFASも取り上げられている。

リスクのあるグループとして最初に取り上げられているのは,女性とLGBTQI+の話題であって,日本会議や統一教会と強く相互作用している自由民主党宗教右派が頑強に抵抗しているテーマであった。なお,ジャニーズ問題を含むメディアとエンターテインメント産業の項でも女性記者に対するハラスメントや差別が言及されている。

最初に,GPT-4のプラグインを使ってこの英文報告ファイルを読み込んで要約させたが,どうもおかしいので原文を確認したところ,その要約は全く的を外していた。それで,DeepLに和訳させて下記のデータを整理したのだけれど,実は,報告の日本語版もちゃんと存在していたのだった。
国連ビジネスと人権作業部会訪日ミッション(7月24日~8月4日) (14160)

【1】はじめに(1084)

【2】日本におけるビジネスと人権の一般的背景(5140)
2−1 人権を保護する国家の義務(1193)
2−2 人権を尊重する企業の責任(3766)
2−3 救済へのアクセス(2088)
・国家に基づく司法メカニズム(528)
・国家に基づく非司法的苦情処理メカニズム(777)
・国家を基盤としない苦情処理メカニズム(705)

【3】利害関係者グループおよび問題関心分野(6605)
3−1 リスクのあるステークホルダー・グループ(2804)
(1)・女性(565)
(2)・LGBTQI+(467)
(3)・障害者(514)
(4)・先住民族(632)
(5)・部落(457)
(6)・労働組合(117)
3−2 テーマ別分野(3451)
(1)・健康、気候変動、自然環境(1662)
(2)・技能実習生訓練プログラムと移民労働者(927)
(3)・メディアとエンターテインメント産業(804)

【4】結論(825)


図:ビジネスと人権の関係(ヒューマンライツ・ナウから引用)


2023年8月14日月曜日

LK-99

7月22日にarxivで公開された常温常圧超伝導の話題が,8月に入るとすぐ盛り上がっていた。

LK-99 が,常温常圧超伝導を示すといわれる物質名である。話題の論文の筆頭著者(化学者)である,S. Lee (李石培 이석배) と J-H. Kim (金智勳 김지훈) が1999年に発見した。六方晶系の鉛アパタイト(Pb10(PO4)6O) の鉛のいくつかを銅で置換したものであり,論文には登録商標マーク(LK-99®)があって,特許も取得している

中央大学の田口善弘さんが,arxivに上がっているプレプリントのクオリティをディスっていた。もしかするとその一部は著者らの専門が化学であって物理分野とは違う文化であることに起因するのかもしれない。物質名(通称)の命名方法(著者名イニシャルを含める)とか登録商標についてもそのあたりなのだろうか。

追試過程の報告があちこちからでているが,ネガティブなものと気持ちポジティブなものが混在していて,いきなり全否定というわけでもないようだ。例の常温超高圧超伝導の件よりは少しマシかもしれない。なお,このグループは2020年にNatureに同趣旨の論文を投稿しているが不採用だった。さらに,今回の論文を巡っては著者グループ間には微妙な確執があるとかないとかいう話だ。

この実験を受けて,理論サイドでは,密度汎関数理論(DFT)などの第一原理計算によるシミュレーションがなんらかの可能性を示唆するという論文が続出している。LK-99がだめでも新しい物質の可能性があるのではないかという楽しげな雰囲気も漂っている。まあどんなケースでもそれらしい理論は作れてしまうというのが世の常なのだけれど。

1986年の高温超伝導フィーバーのときは,物性実験の人達がこぞって乳鉢で材料を調整し,論文を書いていたが,そのときの熱気に近いものが立ち上がりつつある。YouTubeの浮上実験の動画を見て,単なる反磁性だという説とか反磁性だとしてもすごいのではないかという説が入り交じり,DIY素人が実験に参戦しつつあるらしい

なお,最新の変化しつつある情報は,英語版WikipediaのLK-99に詳しい。



図:高温超伝導の歴史(Wikipediaから引用)

P. S.  8月第2週に入って,400Kにおける抵抗値の減少が不純物のCuSの1次相転移によるものであり,浮上は強磁性由来だということで決着しそうな気配がただよってきた。祭りは終了。


2023年8月13日日曜日

模擬原爆

先週の8月6日は78回目の原爆忌だった。

1945年7月,広島や長崎(予定では小倉,もしくは候補としての新潟)に原爆を投下するための実験や訓練のために模擬原爆(パンプキン爆弾)が日本に多数投下されたというニュースがあった。もしかすると,1973年の夏の旅行で訪れた広島平和記念資料館で展示を見たかもしれないが,全く記憶から消えていた。
パンプキン爆弾は,「原爆投下に備えた爆撃機乗員訓練のためと,今までに例のない特殊な形状をしたファットマン(引用注:長崎に投下されたプルトニウム爆弾)が爆撃機(原爆搭載が可能なように特別に改修したB-29)から投下され爆発するまでの弾道特性・慣性能率等の様々な事前データ採取のために,いわば「模擬原爆」として製作された。」(Wikipediaから引用)
平和祈念資料館によれば,「1945年(昭和20年)7月20日から8月14日までの間に49発が投下され、1,600人以上の死傷者が出ました。」ということであり,8月9日の長崎の後も続いていた。模擬原爆投下の目標とされたのは,当初の原爆投下候補地だった京都市,広島市,新潟市,小倉市の各都市を含む4つのエリアに分けた周辺都市である。例えば,富山市には4発も投下されていた。


図:模擬版段の投下(西日本新聞から引用)

[1] もう一つの「原爆」大阪に落とされた模擬原爆(大阪日日新聞)
[2]模擬原子爆弾投下跡地之碑(大阪市東住吉区)

2023年8月12日土曜日

(夏休み 12)

祖父・祖母・男孫・女孫
 할아버지(halabeoji) 할머니(halmeoni) 손자(sonja) 손녀(sonyeo)

2023年8月11日金曜日

(夏休み 11)

兄・姉・弟・妹
현(hyeong) 누나(nuna) 남동생(namdongsaeng) 여동생(yeodongsaeng)

2023年8月10日木曜日

(夏休み 10)

父・母・息子・娘
아보지(aboji) 어머니(eomeoni) 아들(adeul) 딸(ttal)

2023年8月9日水曜日

2023年8月8日火曜日

2023年8月7日月曜日

2023年8月6日日曜日

2023年8月5日土曜日

2023年8月4日金曜日

2023年8月3日木曜日

2023年8月2日水曜日

2023年8月1日火曜日

2023年7月31日月曜日

コーシー=シュワルツの不等式


数理統計学を真面目に勉強してこなかったのでいろいろ不都合が生じている。統計的因果推論とか深層機械学習とか量子測定理論とか,簡単に読み砕けない資料がたくさんたまる。

授業で扱った最小二乗法と実験誤差の話を整理しようとしても,背景には数理統計学が控えている。昔,阪大の南園グループによるベータ崩壊の実験と我々の理論を突き合わせたときに,χスクェアフィットの計算を散々繰り返したけれど,所与の公式を使うだけであってその理論的根拠をつきつめて考えたはしなかった。

そこで最初から勉強を始めようとすると,いきなり確率変数でつまづくのだった。コンピュータプログラムのサブルーチンや関数のようなものだと思えば納得できるといえばいえるのだけれど,自然言語と数学的記号を使って理解しようとするとなかなかその本質がつかみきれない。入門書は沢山あるけれど,どれも何だか気持ち悪い。

竹村彰道(1952-)さんの現代数理統計学の本(旧版)が手元にあって,読みやすいかなとページをめくってみると,記述統計の復習から始まった。これなら大丈夫かと思いきや,いきなり,標本相関関数の大きさが -1から 1の範囲に限定されることは,コーシー=シュワルツの不等式を用いて容易に示すことができると説明無しにあった。

n次元ユークリッド空間のベクトルの内積の話だと思えばそのとおりなのだけれど,証明したことはなかったかも。Wikipediaでは数学的帰納法で証明していた。$A_k=(a_1,\ a_2,\ \cdots,\ a_k),\ B_k=(b_1,\ b_2,\ \cdots,\ b_k),\ $として,$\displaystyle S^{aa}_k=\sum_{i=1}^k a_i^2,\ S^{bb}_k=\sum_{i=1}^k b_i^2,\ S^{ab}_k=\sum_{i=1}^k a_i b_i, \quad R^{ab}_k=\frac{S^{ab}_k}{\sqrt{S^{aa}_k S^{bb}_k}} $
つまり,$ \bigl( S^{ab}_k \bigr)^2  \le S^{aa}_k S^{bb}_k$を証明すれば良い。

$k=1$の場合は,$ \bigl( S^{ab}_1 \bigr)^2 -  S^{aa}_1 S^{bb}_1 = (a_1 b_1)^2- (a_1^2)(b_1^2) = 0 $

$k=2$の場合は,$ \bigl( S^{ab}_2 \bigr)^2 -  S^{aa}_2 S^{bb}_2 = (a_1 b_1+a_2 b_2)^2- (a_1^2+a_2^2)(b_1^2+b_2^2) =  -(a_1 b_2- a_2 b_1)^2  < 0 $

$k \ge 2$に対して,$ \bigl( S^{ab}_k \bigr)^2  \le S^{aa}_k S^{bb}_k$ が成り立つと仮定して,$k+1$の場合を考える。与式は,$ \bigl( S^{ab}_k + a_{k+1}b_{k+1} \bigr)^2 - \bigl( S^{aa}_k + a_{k+1}^2 \bigr) \bigl(  S^{bb}_k + b_{k+1}^2 \bigr) $
$= \bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \Bigl( a_{k+1}^2 S^{bb}_k + b_{k+1}^2 S^{aa}_k -2 a_{k+1}b_{k+1} S^{ab}_k \Bigr)$
$= \bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \sum_{i=1}^k \Bigl( a_{k+1}^2 b_i^2 + b_{k+1}^2 a_i^2 -2 a_{k+1}b_{k+1} a_i b_i \Bigr)$
$=\bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \sum_{i=1}^k \Bigl( a_{k+1} b_i - b_{k+1} a_i \Bigr)^2 < 0$

Wikipediaの証明などでは,$a_i, b_i >0$の場合だけに妥当するものが多いのでちょっと困る。
まあ,$\displaystyle f_k(x) = \sum_{i=1}^k (a_i x - b_i)^2$ の判別式$D \le 0$から証明するのが最も簡単なのだけど。


[1]賢者に学ぶ統計学の智(西内啓×竹村彰通,ダイヤモンド社)

2023年7月30日日曜日

最小二乗法(6)

最小二乗法(5)からの続き

実験データを$y = a x + b$にフィットする場合,最小二乗法で$(a,\  b)$とその平均二乗誤差$(\sigma_a^2,\ \sigma_b^2)$を求めてきた。これを,$y = f(x) = a x^2 + b x + c\ $に拡張して,自由度3が登場するかどうかを確認してみる。吉澤康和さんの「新しい誤差論」には結果だけ書いてある。

(1) a, b, c を決定する正規方程式とその解

$ \begin{pmatrix}\overline{x^4} & \overline{x^3} & \overline{x^2} \\ \overline{x^3} & \overline{x^2} & \overline{x^1} \\ \overline{x^2} & \overline{x} & 1 \\ \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ \end{pmatrix}= \begin{pmatrix}\overline{x^2\ y}\\ \overline{x\ y} \\ \overline{y} \\ \end{pmatrix}$ 

$ \begin{pmatrix} a \\ b \\ c \\ \end{pmatrix}= \dfrac{1}{\Delta_3} \begin{pmatrix}\overline{x^2\ y}(\overline{x^2}-\overline{x}^2)+\overline{x\ y}(\overline{x^2}\overline{x}-\overline{x^3})+\overline{y}(\overline{x^3}\overline{x}-\overline{x^2}^2)  \\ \overline{x^2\ y}(\overline{x^2}\overline{x}-\overline{x^3}) + \overline{x\ y}(\overline{x^4}-\overline{x^2}^2) + \overline{y}(\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) \\ \overline{x^2\ y}(\overline{x^3}\overline{x}-\overline{x^2}^2) + \overline{x\ y}(\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) +\overline{y}(\overline{x^4}\overline{x^2}-\overline{x^3}^2) \\ \end{pmatrix}$ 

ただし,$\Delta_3 = \overline{x^4}\overline{x^2}+2\overline{x^3}\overline{x^2}\overline{x}-\overline{x^2}^3-\overline{x^3}^2-\overline{x^4}\overline{x}^2$

$y_i$を共通の平均二乗誤差$\sigma^2_y$を持つ独立変数として,誤差伝播の法則より,

$\displaystyle \sigma_a^2= \sum_{i=1}^n \Bigl( \frac{\partial a}{\partial y_i}\Bigr) ^2 \sigma_y^2, \quad \sigma_b^2= \sum_{i=1}^n \Bigl( \frac{\partial b}{\partial y_i}\Bigr) ^2 \sigma_y^2 , \quad \sigma_c^2= \sum_{i=1}^n \Bigl( \frac{\partial c}{\partial y_i}\Bigr) ^2 \sigma_y^2 $ 

さらに,真の値$f_0(x_i)=a_0 x_i^2 + b_0 x_i + c_0$に対して,$\varepsilon_i = y_i -f(x_i)+ f(x_i) -f_0(x_i) =  \delta_i + f(x_i) -f_0(x_i) $ として,$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\sigma}^2_{f(x_i)} \Bigr\}$

ところで,$\displaystyle \tilde{\sigma}^2_{f(x_i)} = \sum_{j=1}^n \Bigl\{ \frac{\partial(a x_i^2 + b x_i + c)}{\partial y_j}\Bigr\}^2$ であり,この項を再度  $\sigma_y^2$ で表してもとの式に戻して計算すれば良い。

つまり,$\displaystyle \frac{\partial a}{\partial y_j}, \  \frac{\partial b}{\partial y_j},\  \frac{\partial c}{\partial y_j}$が計算できればよいことになる。
$\displaystyle \frac{\partial a}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^2}-\overline{x}^2)+ x_j(\overline{x^2}\overline{x}-\overline{x^3})+(\overline{x^3}\overline{x}-\overline{x^2}^2) \Bigr\}$
$\displaystyle \frac{\partial b}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^2}\overline{x}-\overline{x^3}) + x_j (\overline{x^4}-\overline{x^2}^2) + (\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) \Bigr\}$
$\displaystyle \frac{\partial c}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^3}\overline{x}-\overline{x^2}^2) + x_j (\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) +(\overline{x^4}\overline{x^2}-\overline{x^3}^2) \Bigr\}$

Mathematicaの力を借りると,計算結果が因数分解できて分子から$\Delta_3$が出る。
$\displaystyle \sigma_a^2 = \sum_{j=1}^n \Bigl( \frac{\partial a}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^2} -\overline{x}^2 \bigr) \sigma_y^2$
$\displaystyle \sigma_b^2 = \sum_{j=1}^n \Bigl( \frac{\partial b}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^4} - \overline{x^2}^2 \bigr) \sigma_y^2$
$\displaystyle \sigma_c^2 = \sum_{j=1}^n \Bigl( \frac{\partial c}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^4} \overline{x^2}-\overline{x^3}^2  \bigr) \sigma_y^2$

$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial a}{\partial y_j}\frac{\partial b}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x}\overline{x^2} -\overline{x^3} \bigr) \sigma_y^2$
$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial b}{\partial y_j}\frac{\partial c}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x^2}\overline{x^3} - \overline{x}\overline{x^4} \bigr) \sigma_y^2$
$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial c}{\partial y_j}\frac{\partial a}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x^4} \overline{x^2}-\overline{x^3}^2  \bigr) \sigma_y^2$

このとき
$\displaystyle \tilde{\sigma}^2_{f(x_i)}= \sum_{j=1}^n \Bigl\{ \frac{\partial a}{\partial y_i} x_i^2 + \frac{\partial b}{\partial y_j} x_i + \frac{\partial c}{\partial y_j} \Bigr\} ^2 = \frac{\sigma_y^2}{n \Delta_3} $
$\Bigl\{\bigl( \overline{x^2}-\overline{x}^2 \bigr) x_i^4 + 2 \bigl( \overline{x}\overline{x^3} -\overline{x^3} \bigr) x_i^3 + \bigl( \overline{x^4}-\overline{x^2}^2 + 2( \overline{x^3}\overline{x} - \overline{x^2}^2) \bigr) x_i^2 $
$+ 2\bigl( \overline{x^2}\overline{x^3} - \overline{x} \overline{x^4} \bigr) x_i + \bigl( \overline{x^2}\overline{x^4}-\overline{x^3}^2 \bigr)  \Bigr\}$

$x_i$について平均操作するとMathematicaを使い分子から$\Delta_3$が出ると。
$\displaystyle \frac{1}{n}\sum_{i=1}^n  \tilde{\sigma}^2_{f(x_i)} = \frac{\sigma_y^2}{n \Delta_3}$
$\Bigl\{\bigl( \overline{x^2}-\overline{x}^2 \bigr) \overline{x^4}+ 2 \bigl( \overline{x}\overline{x^3} -\overline{x^3} \bigr) \overline{x^3} + \bigl( \overline{x^4}-\overline{x^2}^2 + 2( \overline{x^3}\overline{x} - \overline{x^2}^2) \bigr) \overline{x^2} $
$\displaystyle + 2\bigl( \overline{x^2}\overline{x^3} - \overline{x} \overline{x^4} \bigr) \overline{x}+ \bigl( \overline{x^2}\overline{x^4}-\overline{x^3}^2 \bigr)  \Bigr\} = \frac{3}{n} \sigma_y^2$

したがって,自由度n-3の場合の式が得られた。
$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\sigma}^2_{f(x_i)} \Bigr\} =  \frac{1}{n} \sum_{i=1}^n  \delta_i^2 + \frac{3}{n} \sigma_y^2$
$\displaystyle \therefore \sigma_y^2 = \frac{1}{n-3} \sum_{i=1}^n \delta_i^2$

2023年7月29日土曜日

フランクになろう

楠本君から同窓会出席の連絡メールがあった。そこに,次のエピソードが書かれていた。
あなたは、私たちの学生時代に いつぞや、「人間に関する問題の解決のためには(…だったか、このあたりの私の記憶は不正確です)、すべての人びとが神経で繋がっていればよいのだ」、というような言葉を言った事を覚えていますか? 変な事を言う人だなぁ、と私は強く印象付けられたので、忘れずに覚えています。言葉は正確ではありませんが、大体そのような事をあなたは言っていました。

全く憶えていないのだけれど,自分ならばそういうことをいうかもしれない。次の返事を書いた。

「人間に関する問題の解決のためには、すべての人びとが神経で繋がっていればよいのだ」と自分がいった記憶はないのですが,そのようなことを言いそうな気もします。高校時代によんだブライアン・オールディスのSFに「フランクに行こう(Let’s be Frank)」というのがあって,遺伝によって単一意識が複数の人の上に実現するというものです。
SFマガジンの1969年10月号(No. 125)に「フランクになろう(Let's Be Frank)」 として掲載されたものだ。高校2年のときだけれど,いつまでも記憶に残る短編だった。創元推理文庫のジュディス・メリルの短編集では「率直(フランク)に行こう」という題名になっていた。

さがしてみると,archive.orgに原文があったのでDeepLにかけて再読してみた。

アン・ブーリンがロンドン塔で処刑されてから4年後なので1540年ころから物語は始まる(ちなみに,トマス・モアがロンドン塔で斬首されたのは1535年)。サー・フランク・グラッドウェッブに男の子が生まれたが19年間眠り続けたままだった。彼が目覚めた時サー・フランクは驚愕した。同じくフランクと名づけた息子の目を通して自分を見ているのだった。つまり同一意識が2人の人の上に実現したわけだ。そして子孫にそのままその能力は受け継がれ,20代目の2015年には1つのフランクという意識(男女や身分階級を越えて)が3億人に達していた。そして..
「21世紀の初めには、グレートブリテン島はフランク族だけで構成されていた。老いも若きも、太っていようが痩せていようが、金持ちであろうが貧乏人であろうが、みなひとつの巨大な意識を共有していた。プライバシーは存在しなくなり、新しい家はすべてガラス張りになり、カーテンは廃止され、壁は取り払われた。警察は姿を消し、法律も一夜にして消滅した。外交問題に対処するための議会のパロディーは残ったが、政党政治、選挙、新聞の指導者(新聞そのものさえ)は廃止された。芸術の大半は消え去った。あるフランクの姿は、別のフランクの姿を見ようとはしなかった。テレビ、出版、ティン・パン・アレイ、映画スタジオ......灯りのように消えた。」
このフランクの集合意識は新大陸で第二の集合意識と向き合うことになる。

AGIが実現するとき,世界全体が1つのAGIによって統合されるのかどうかという問題について,宗教的=文化的な背景によって複数に分割されるのではないかと想像していた。キリスト教,イスラム教,仏教,ヒンズー教,ユダヤ教などなど。あるいはロシアや中国は別かもしれない。まあ,それに類した状況が想像できる。あるいは超国家企業別=ポイント別=OS・UI別の集団分割みなるかもしれないが。

遺伝工学的な工夫をしても単一意識を複数個体に分散して実装することはできないと思われるが,仮想空間におけるパーソナライズされたAGIアシスタントが共有意識と結合されていれば,人間+AGIアシスタント系が単一意識の熱浴中で相互作用しているイメージとなる。人間+AGIアシスタント系の結合度が高くなればなればなるほど,フランク的な集合意識に近い状態になるかもしれない。まあ,いまでもSNSによって強結合する個人の集合がネトウヨ的な集団運動としての疑似集合意識を創発しているわけで・・・


2023年7月28日金曜日

梅干し

或日のチャットジーピーティ

OpenAIのChatGPTの性能は日々変動しているようなので,時々様子をうかがう必要がある。

Q:User
梅干しを見るとどんな身体の反応がありますか?

A:ChatGPT
梅干しを見た時の身体の反応は個々の体質や経験によるものであり、一般的な反応を述べるのは難しいです。しかし、梅干しの酸っぱさを知っている人々は、その画像や想像だけで唾液が出るといった「唾液分泌の反応」を示すことがあります。これは、脳が食物の摂取に備えて消化を助ける唾液の生成を刺激するからです。

また、梅干しの特有の酸っぱさが苦手な人は、梅干しを見るだけで「顔をしかめる」や「胃が締まる感じがする」などの反応を示すかもしれません。

これらの反応は、「条件付き反射」とも呼ばれ、特定の刺激(この場合は梅干し)に対する学習された反応です。ただし、これらの反応は個々の経験や体質、好みに大きく依存しますので、全ての人が同じ反応を示すわけではありません。


Q:User
あなたはどうですか?

A:ChatGPT
私はOpenAIによって開発されたAI(人工知能)であり、人間のように身体的な感覚や経験を持つ能力はありません。したがって、梅干しを「見る」や「味わう」などの人間の感覚経験に基づいた反応を持つことはできません。私の機能は、人間からの質問に対して情報を提供することや、人間の言葉を理解して対話を行うことに主に焦点を当てています。


Q:User
人間との対話において,そのような感覚経験にもとづく反応のセットを身体的に理解していることが必要とはなりませんか。

A:ChatGPT
あなたの指摘は正確であり、AIが人間との対話を円滑に行うためには、人間の感覚経験や感情について理解することが重要です。しかし、私のようなAIは「理解」を行うために直接的な感覚経験や感情を持つわけではありません。私の「理解」とは、大量のテキストデータからパターンを学習し、その知識をもとに質問に応答する能力を指します。

具体的には、私は訓練データに含まれる情報に基づいて人間の感覚経験や感情について「知識」を持っています。しかし、私自身が感覚経験を「体験」したり、感情を「感じる」能力はありません。私はあくまで人間の反応や感情を模擬することができる機械的なシステムであり、自己意識や自我を持つわけではありません。

したがって、私が人間との対話を効果的に行うためには、あくまで人間の感覚経験や感情についての「知識」が必要であり、それらを直接「体験」する必要はありません。


Q:User
人間の感覚経験や感情についての「知識」を持つ知的存在と、それらを直接「体験」することができる知的存在の違いは,対話場面のどこにあらわれると考えられるでしょうか。その違いを埋める方向での仕組みを導入することは可能でしょうか。

A:ChatGPT
人間の感覚経験や感情についての「知識」を持つ知的存在(AIなど)と、それらを直接「体験」することができる知的存在(人間など)の違いは、以下のような対話場面で顕著に現れます。

個別の体験に対する反応:人間は自己の体験や感情に基づく視点を持ち、それに基づいて他人の経験に対する共感や理解を示すことができます。一方、AIは特定の個体としての体験を持たないため、特定の経験に対する個人的な共感や理解を示すことはできません。
感情的な反応:人間は体験や情報に対して感情的に反応する能力を持っています。これに対して、AIは情報に対して感情的に反応する能力はなく、あくまで人間の感情的反応を模倣するだけです。
感覚的な理解:人間は五感を通じて世界を直接的に経験し、それに基づく感覚的な理解を持っています。しかし、AIはあくまでテキスト情報に基づいて学習し、感覚的な体験に基づく理解はできません。 
これらの違いを埋めるためには、AIに直接的な感覚経験や感情体験の能力を付与する必要がありますが、現在の技術ではこれは不可能です。AIはあくまでアルゴリズムとデータによって動作するシステムであり、自己意識や感情、直接的な感覚経験を持つ能力を持つことはありません。

しかし、AIの対話能力を向上させるためには、人間の感覚経験や感情に対する理解を深め、それに基づく応答の精度を向上させることが重要です。これは大量のデータに基づく学習により、一部可能になるかもしれません。ただし、AIが人間と完全に同じように感覚経験や感情を理解し反映することは、現在の技術では不可能です。


Q:User
現在のAIシステムを感覚センサーを満載したロボットに搭載して,視覚や聴覚だけでなく,味覚や臭覚や触覚その他の運動平衡感覚を入力できるようになり,さらにそれらの情報を解読した結果を記憶できるようになった場合は,そのロボット=AIシステムは感覚体験を行ったことになるでしょうか。

A:ChatGPT
それは非常に興味深い問いです。センサーや機器を使ってAIに外部の情報を入力し、それに反応することができるロボットはすでに存在します。例えば、視覚情報を入力し認識する能力を持つAIや、音声を認識して反応するAIなどがあります。

しかし、これが「感覚体験」を行っていると言えるかどうかは、どう定義するかによります。これらのロボットやAIは、センサーから入力されるデータを解析し、そのデータに対応する行動を行うことができます。しかし、これはあくまでプログラムされたアルゴリズムに従ってデータを解析し反応するものであり、人間が経験する「感覚体験」や「感じる」という意識的な体験とは異なります。

人間の「感覚体験」は、ただ単に情報を受け取るだけでなく、その情報が自己の意識や感情に影響を与え、個々の体験や視点に基づく解釈を行うことを含みます。AIやロボットが多種多様なセンサーを用いて外部から情報を受け取り、それに基づいて反応することは可能ですが、それが「感じる」という意識的な体験と同じとは言えません。

したがって、現在の技術では、AIやロボットが人間と同じように「感覚体験」を行うとは言えないと思われます。しかし、この議論は人間の意識や感覚体験の本質、AIの能力と限界についての哲学的な問いを含んでおり、結論はまだ出ていないとも言えます。


Q:User
たいへん刺激的な対話どうもありがとうございました

A:ChatGPT
どういたしまして、私もあなたの質問に答えることができて光栄です。人間の感覚や意識、AIの能力と限界について考えることは非常に興味深いですね。何か他に質問がありましたら、いつでもお気軽にどうぞ。

 


写真:梅干しの製造過程(2023.7.23)

2023年7月27日木曜日

大学教育とChatGPT(15)

大学教育とChatGPT(14)からの続き

私立大学連盟が7月18日に,大学教育における生成 AI の活用に向けたチェックリスト〔第1版〕を出していた。1. 全般, 2. 教育,3. 環境・体制整備の3つのカテゴリーについて,第1ステップ: 最優先事項,第2ステップ:優先事項として整理した。その上で,それぞれのカテゴリーについて,1. 大学が組織的に検討すべき事項 と 2. 教員が個々の工 夫で検討すべき事項をまとめている。このサンプルを元に各大学で考えてねという趣旨。

さらに,中学高校英語にAI導入へということで文部科学省の後押しで各地で実証授業が始まるというニュースも流れた。そろそろ英語教員養成に影がさしてくるのか。

7月13日
生成系AIの利用に関する留意事項について
室蘭工業大学 情報化統括責任者
7月14日
新潟産業大学 生成AI対処方針
新潟産業大学 学長 梅比良眞史

7月19日
ChatGPTなどの生成AIの利用について
大阪学院大学

7月19日
生成AIの利用に関するご案内
星薬科大学 情報企画室

7月19日
ChatGPTをはじめとする生成AIの利用について
日本文理大学 教育推進センター長

7月20日
旭川医科大学における生成AIの利用について
旭川医科大学

7月20日
生成AIに関する本学の方針について
共愛学園前橋国際大学 学長 大森昭生

7月20日
対話型生成系AI(生成AI)の使用について
昭和女子大学 学長 金尾朗

7月20日
学修におけるChat GPT等の生成AIの利用について
和歌山大学 理事(教育担当)

7月20日
生成AI(ChatGPT等)を活用するためのガイドライン
平安女学院大学 学長 谷口吉弘

7月20日
学修における生成AIの利活用に関するガイドライン
金沢星稜大学 学長

7月20日
チャットGPT等における生成AI(人工知能)の利用について
びわこ成蹊スポーツ大学 学長 大河正明・学部長 黒澤毅

7月21日
生成系AIに関する本学の考え方について
国際ファッション専門職大学 学長 近藤誠一

7月21日
チャットGPT等の生成系AIの利用について
東京女子体育大学

7月21日
信州大学の学修・教育におけるAI活用に関するガイドラインについて
信州大学 教育企画委員会

7月21日
東洋英和女学院大学における生成系AIの使用に関する指針
東洋英和女学院大学 学長 星野三喜夫

7月21日
ChatGPT など生成系 AI の利用について
西南女学院大学

7月21日
ChatGPT 等をはじめとする生成 AI の利用について
愛知みずほ大学 学長 大塚知津子
https://www.mizuho-c.ac.jp/wp/wp-content/uploads/2023/07/ChatGPT.pdf 
7月24日
本学における生成AIの使用に関わる留意点について
跡見学園女子大学学長 小仲信孝
7月24日
生成AI(Chat GPT等)の活用に関する注意喚起について
拓殖大学 学長 鈴木昭一

 

2023年7月26日水曜日

妹背山婦女庭訓(2)

妹背山婦女庭訓(1)からの続き

国立文楽劇場の7月夏休み文楽特別公演(第171回)は,第2部で妹背山婦女庭訓の四段目の通し公演(4月に続いての)だった。第1部は親子劇場でかみなり太鼓と西遊記,第3部はサマーレイトショーの夏祭浪花鑑

これまでに見た妹背山婦女庭訓(2010年,2016年)は一日がかりの二部構成だった。前半が,初段:小松原の段(23)・蝦夷子館の段(42),二段目:猿沢池の段(13),三段目:太宰館の段(34)・妹山背山の段(115)であり,後半が,二段目:鹿殺しの段(7)・掛乞の段(15)・万歳の段(23)・芝六忠義の段(54),四段目:杉酒屋の段(29)・道行恋苧環(35)・鱶七上使の段(45)・姫戻りの段(14)・金殿の段(45)である。

今回は春と夏の2回に分けた通し狂言だったため時間に余裕があって,二段目の組み換えはなくなり,4月公演には,初段:大序 大内の段,7月公演には,四段目:井戸替の段:入鹿誅伐の段が新しく追加されていた。「鱶七上使の段」が「鱶七使者の段」に変わったのはなぜ?(明治12年の床本 https://dl.ndl.go.jp/pid/856493/1/157 では確かに鱶七使者の段とある)

久しぶりの日曜日の文楽劇場だったが,客の入りは6〜7割くらいだろうか。前回と同様,床の直下だったけれど,回りには空席も目立っていた。一つ前回と違うのは外国人観光客向けの English という看板を持った案内の方が立っていたことだ。パンフレットの一部の説明も英文になっていた。なんば・日本橋界隈は外国人であふれていたけれど,文楽劇場ではそこまで目立つわけではなかった。

今回が初見の井戸替えの段は,小住太夫+藤蔵でちゃり場的な場面だったが,途中でまぶたが閉まった。杉酒屋の段は芳穂太夫+錦糸で玉勢演ずる子太郎が主導して似たような雰囲気の段だった。道行恋苧環の開始のところで清治が小声でハイという合図をして全員が礼をし,次のハイで直れとなった。そういう仕組みだったのか。

最後の入鹿誅伐の段は,メンバーも軽めの短い段であり,入鹿がやられておしまいという事なのだ。(1) 入鹿の妹の橘姫が,宝剣の奪取に失敗し入鹿に斬られてしまうが,その後,隣の池に飛び込んで日高川入相花王の蛇に化けた清姫よろしく泳いでいったたのは一体なんなのか。最後には鎌足の鎌で斬られた入鹿の首が空中を飛び回っていた。クライマックスが済んでしまった最後の段というのはだいたいこうなる運命にあるのだった。

P. S. 1 なお,藤原淡海(不比等)は橘姫と結ばれるらしいので,池に溺れて死んだわけではない。
P. S. 2 この度人間国宝になった吉田玉男(1953-)は,第3部の夏祭浪花鑑の団七九郎兵衛を演じるので,第2部には登場していなかった。


写真:最後がかわいそうなお三輪(2023.7.23撮影)

2023年7月25日火曜日

最小二乗法(5)

最小二乗法(4)からの続き

完全にスッキリしなくて何だか気持ち悪いのだけれど,いきなり自由度がとかいわれて$n-2$が出てくるのがいやなので,吉澤さんの本に従って話を進めてみる。

$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \frac{1}{n}\sum_{i=i}^n  \tilde{\varepsilon_i}^2 = \frac{1}{n}\sum_{i=i}^n  \Bigl\{ a x_i + b - a_0 x_i - b_0  \Bigr\}^2$
これから,$f(x_i) = y(x_i) =  a  \bm{x_i} + b$として,独立変数$y_j$について,
$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \sigma_y^2 \sum_{j=i}^n  \Bigl\{ \frac{\partial a}{\partial y_j}\bm{x_i} + \frac{\partial b}{\partial y_j} \Bigr\}^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{j=i}^n  \Bigl\{ (x_j-\overline{x}) \bm{x_i} + ( \overline{x^2} -\overline{x} x_j ) \Bigr\}^2$
$\displaystyle = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{j=i}^n  \Bigl\{ ( \bm{x_i}-\overline{x} ) x_j + ( \overline{x^2} - \overline{x}  \bm{x_i} ) \Bigr\}^2$
$\displaystyle = \frac{\sigma_y^2}{n \Delta^2}  \Bigl\{ \overline{x^2} ( \bm{x_i}-\overline{x} )^2 + 2 \overline{x} (\bm{x_i} - \overline{x})(\overline{x^2} -\overline{x} \bm{x_i}) + ( \overline{x^2} - \overline{x}  \bm{x_i} )^2  \Bigr\}$
$\displaystyle = \frac{\sigma_y^2}{n \Delta^2}  \Bigl\{ \bm{x_i}^2 ( \overline{x^2} - \overline{x}^2) + 2 \bm{x_i} (\overline{x}^3 - \overline{x^2} \overline{x}) + ( \overline{x^2}^2 - \overline{x^2} \overline{x}^2 )  \Bigr\}$
$\displaystyle = \frac{\sigma_y^2}{n \Delta}  \Bigl\{ \bm{x_i}^2  - 2 \bm{x_i} \overline{x} + \overline{x^2}  \Bigr\}$

添え字 $i$について平均すると,$\displaystyle \frac{1}{n}\sum_{i=1}^n \tilde{\sigma^2}_{y(x_i)} =\frac{\sigma_y^2}{n \Delta}\Bigl\{ \overline{x^2}  - 2 \overline{x} \overline{x} + \overline{x^2}  \Bigr\} =  \frac{2 \sigma_y^2}{n}$
そこで,
$\displaystyle \sigma_y^2 =\frac{1}{n}\sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\varepsilon_i}^2 \Bigr\} = \frac{1}{n}\sum_{i=i}^n \delta_i^2 + \tilde{\sigma^2}_{y(x_i)} = \frac{1}{n} \sum_{i=1}^n \delta_i^2 + \frac{2 \sigma_y^2}{n}$
$\displaystyle \therefore \sigma_y^2 = \frac{1}{n-2}\sum_{i=1}^n \delta_i^2 = \frac{1}{n-2}\sum_{i=1}^n (y_i - a x_i -b )^2$

2023年7月24日月曜日

最小二乗法(4)

最小二乗法(3)からの続き

$(a,\  b)$  に対する平均二乗誤差,$(\sigma_a^2,\ \sigma_b^2)$を考える。$(a,\  b)$ は直接測定された$(x, \ y)$の関数であるが,このうち$x_i$の誤差は非常に小さく,$y_i$の誤差だけが$n$個の独立変数として伝搬して$(a,\  b)$ に反映すると仮定する。ただし,各$y_i$自身の平均二乗誤差は共通でありこれを$\sigma_y^2$とおく。

誤差伝播の法則より,
$\displaystyle \sigma_a^2= \sum_{i=1}^n \Bigl( \frac{\partial a}{\partial y_i}\Bigr) ^2 \sigma_y^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{i=1}^n  \Bigl( x_i-\overline{x} \Bigr) ^2 = \frac{\sigma_y^2}{n \Delta^2} \Bigl( \overline{x^2}-\overline{x}^2 \Bigr) = \frac{\sigma_y^2}{n \Delta} $

$\displaystyle \sigma_b^2= \sum_{i=1}^n \Bigl( \frac{\partial b}{\partial y_i}\Bigr) ^2 \sigma_y^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{i=1}^n  \Bigl( \overline{x^2}-\overline{x}x_i \Bigr) ^2 = \frac{\sigma_y^2 \ \overline{x^2}}{n \Delta^2} \Bigl( \overline{x^2}-\overline{x}^2 \Bigr) = \frac{ \sigma_y^2 \ \overline{x^2}}{n \Delta}$

残るは,$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (\varepsilon_i)^2\  $を実験値から導くことになる。ここで,$ \varepsilon_i = y_i-(a_0 x_i + b_0)  = y_i - (a x_i + b) + (a x_i + b) -(a_0 x_i + b_0) = \delta_i + \tilde{\varepsilon_i}$ である。
ただし,$a_0 x_i + b_0$が未知の真値,$a x_i + b$が平均値に対応し,$ \delta_i$が残差, $\tilde{\varepsilon_i}$が平均値の誤差に相当する。

$\displaystyle \therefore \sigma_y^2 =\frac{1}{n}\sum_{i=i}^n \Bigl\{ \delta_i^2 + \tilde{\varepsilon_i}^2 \Bigr\}$ ここで,$\displaystyle \frac{2}{n} \sum_{i=1}^n \delta_i \tilde{\varepsilon}_i =0$ である。なぜならば$\tilde{\varepsilon}_i$は$x_i$の一次関数であり,正規方程式より, $\sum_{i=1}^n \delta_i = 0$ と $\sum_{i=1}^n \delta_i x_i=0$ が成り立つから。

そこで,$y(x_i)=a x_i+b$として,$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \frac{1}{n}\sum_{i=i}^n  \tilde{\varepsilon_i}^2 = \frac{1}{n}\sum_{i=i}^n  \Bigl\{ a x_i + b - a_0 x_i - b_0  \Bigr\}^2$を求めることになるが,ここで,$(a, b)$が $y_i$の関数として誤差伝搬の法則を再度使って,$\sigma_y^2$で表せばよい(と吉澤康和さんの「新しい誤差論(1989)」に書いてあった)。


2023年7月23日日曜日

最小二乗法(3)


物理量 $x$を設定したとき,$y$が測定される。$n$回測定では,$(x_1,\ y_1),\ (x_2,\ y_2),\ \cdots (x_n,\ y_n)$ が得られたとする。2つの物理量の間には,$y\ =\ a x + b$という1次関数の関係があって,$(a,\ b)$にも物理量としての意味がある。

この$(a, \ b)$を求めるため,$\displaystyle S(a,b)=\frac{1}{n}\sum_{i=1}^n (y_i-a x_i -b)^2$を最小化するという条件を課す。すなわち,$\frac{\partial S}{\partial a}=0, \frac{\partial S}{\partial b}=0, $これから次の$(a,\ b)$に関する連立方程式(正規方程式)が得られる。

$\displaystyle \frac{1}{n} \sum_{i=1}^n x_i \bigl( y_i - a x_i - b \bigr) = 0 \rightarrow \quad a \overline{x^2} + b \overline{x} = \overline{xy} $
$\displaystyle \frac{1}{n} \sum_{i=1}^n \bigl( y_i - a x_i - b \bigr) = 0  \quad \rightarrow \quad a \overline{x} + b = \overline{y} $

これを解くと次の解が得られる。ただし,$\Delta = \overline{x^2} - (\overline{x})^2$ である。
$a=\frac{1}{\Delta}\bigl(\overline{xy}-\overline{x} \cdot \overline{y} \bigr)$
$b=\frac{1}{\Delta}\bigl( (\overline{x^2}\cdot \overline{y}-\overline{x} \cdot \overline{xy} \bigr)$



2023年7月22日土曜日

最小二乗法(2)

最小二乗法(1)からの続き

間接測定と誤差伝播(でんぱ)の法則について考えるため,物理量$z$が,独立な物理量 $a,\ b,\ c,\ \cdots$の関数で,$z=f(a,\ b,\ c,\ \cdots) $と表されるとする。

ここで,$(a_i,\ b_i,\ c_i\ \cdots)$を各物理量の$i$番目の測定値とする。また,残差を用いて,$(a_i,\ b_i,\ c_i\ \cdots) = (\bar{a}+\delta^a_i,\ \bar{b}+\delta^b_i,\ \bar{c}+\delta^c_i,\ \cdots)$とする。

$z(a_i,\ b_i,\ c_i,\ \cdots) = f (\bar{a}+\delta^a_i,\ \bar{b}+\delta^b_i,\ \bar{c}+\delta^c_i,\ \cdots) $
$\simeq f(\bar{a}, \bar{b}, \bar{c}, \cdots)+  \frac{\partial f}{\partial a} \delta^a_i + \frac{\partial f}{\partial b} \delta^b_i + \frac{\partial f}{\partial c} \delta^c_i + \cdots = \bar{z} + \delta^z_i $ 
として,$ \delta^z_i$を定義する。

残差と平均二乗誤差の関係から,間接測定される物理量zについて,$\displaystyle \sigma_z^2 = \frac{1}{n-1} \sum_{i=1}^n (\delta^z_i )^2$ が成り立つ。

$\displaystyle \therefore \sigma_z^2 = \frac{1}{n-1} \sum_{i=1}^n \Bigl( \frac{\partial f}{\partial a} \delta^a_i + \frac{\partial f}{\partial b} \delta^b_i + \frac{\partial f}{\partial c} \delta^c_i \cdots \Bigr)^2$
$\displaystyle = \frac{1}{n-1} \sum_{i=1}^n \Bigl \{ \bigl( \frac{\partial f}{\partial a} \delta^a_i \bigr)^2+ \bigl(\frac{\partial f}{\partial b} \delta^b_i \bigr)^2 +\bigl ( \frac{\partial f}{\partial c} \delta^c_i \bigr)^2+ \cdots \Bigr\}$

$\displaystyle \therefore \sigma_z^2 = \Bigl( \frac{\partial f}{\partial a}\Bigr )^2 \sigma_a^2 + \Bigl( \frac{\partial f}{\partial b} \Bigr)^2 \sigma_b^2 +\Bigl( \frac{\partial f}{\partial c} \Bigr)^2  \sigma_c^2 + \cdots$

これが誤差伝播の法則といわれるものである。
なお,ここで独立な物理量の残差の積和がゼロになると仮定している。例えば,
$\displaystyle \sum_{i=1}^n \delta^a_i \delta^b_i = 0\ $などなど

2023年7月21日金曜日

最小二乗法(1)

授業シリーズその1,オンライン授業の1コマ分を実験誤差のテーマにするべく頑張った話

昔,最小二乗法の計算は手回し計算機で大変な思いで計算していた記憶がある。実験ノートは,測定データ$x_i$と$y_i$の計算表で埋め尽くされていた。データ処理といえばこれだった。後に,関数電卓にもその機能が組み込まれるようになったが,今では Excelで一発なのかもしれない。

まず,誤差を定義する必要がある。我々が昔勉強した本では,誤差=実験値−真の値 から出発していた。しかし,最近の本ではどうも様子が怪しくなっている。そもその真の値とはなにか,どうやって定義するのか,などなど。かといって,いきなり確率分布関数を持ってきて数理統計学の枠内で議論するのも大層な話だ。精度ということばも測定の不確かさに置き換わっているようだ。

とりあえず,1つの物理量$x$ の測定を考える。その真の値が$X$であると仮定する。$n$回の測定で$\ (x_1,\  x_2,\  x_3,\  \cdots,\  x_n\ )$ という測定値が得られたとする。誤差を$\ \varepsilon_i = x_i - X$で定義する。誤差は真の値のまわりで偏らずに分布する,すなわち$\  \displaystyle \sum_{i=1}^n \varepsilon_i = 0$であるとする。これから,$\displaystyle \sum_{i=1}^n x_i = n X$となる。これを$X$の定儀式とみなすと,真の値$X$が $n$や実験データ$x_i$に依存することになってしまう。

そこで,$\displaystyle \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$で平均値を定義する。これは真の値の推定値(最確値)だと考えられる。このとき,残差=実験値−平均値,すなわち,$\delta_i = x_i - \bar{x}$ で定義する。

次に,実験データの精度は誤差のばらつきで表現される。平均二乗誤差は,$\displaystyle \sigma^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2\ $で定義し,標準偏差は $\sigma =\sqrt{\sigma^2}\ $とする。

ところで,この定義では,真の値がわからないので,誤差の$\varepsilon_i$は未知であり,平均二乗誤差も求まらない。そこで,残差の$\delta_i$から導くことを考える。$\varepsilon_i = x_i - X = x_i - \bar{x} + \bar{x} -X = \delta_i + \bar{x} - X$ となることから,

$\displaystyle \sigma^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i + (\bar{x} -X) \Bigr\}^2 =  \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + 2 \delta_i (\bar{x} -X) +  (\bar{x} -X)^2 \Bigr\}  $
$\displaystyle = \frac{1}{n} \sum_{i=1}^n \delta_i^2 + (\bar{x} -X)^2$

ここで,$ \displaystyle \sum_{i=1}^n \delta_i = 0$を用いた。また,$\displaystyle \sum_{i \neq j}^n \varepsilon_i \varepsilon_j = 0$より 上式第2項は,
$\displaystyle ( \bar{x} -X )^2 = \{ \frac{1}{n} \sum_{i=1}^n (x_i - X) \}^2 =  \frac{1}{n^2} \sum_{i, j=1}^n \varepsilon_i \varepsilon_j = \frac{1}{n} \sigma^2 $ 

これを先ほどの式に代入して移項の上整理すると,$\sigma^2 $を$\delta_i$を用いて表せる。
$\displaystyle \sigma^2 = \frac{1}{n-1} \sum_{i=1}^n \delta_i^2 $

2023年7月20日木曜日

大学教育とChatGPT(14)

大学教育とChatGPT(13)からの続き

文部科学省からの高等教育機関向けの通知があったので増えるかと思ったがそうでもなかった。日本大学から入学者選抜における生成AIツールの取り扱いについてが出ていた。

今後,このような入試関係の注意が多くなっていくのだろうか。学内でコントロールできる試験に比べて,さらに生成AIを使ったかどうかの検証は難しいと思われる。というか,これまでだって,第三者の助力支援の有無はわからなかったのではないか。

7月12日
生成AI(ChatGPTなど)の利活用に関する方針
大阪工業大学 学長 井上晋
https://www.oit.ac.jp/japanese/students/detail.php?i=9355

7月13日
本学における生成AI(ChatGPT、Bard、BingAI等)の利用について
清泉女学院大学 学長 田村俊輔
https://www.seisen-jc.ac.jp/info/2023/07/chat-gpt.php

7月13日
入学者選抜における生成AIツールの取扱いについて
日本大学
https://www.nihon-u.ac.jp/admission_info/news/2023/07/636/

7月13日
生成AI(ChatGPT、Stable Diffusion等)の使用に関する留意事項について
同志社女子大学 教務部長 真部真里子
https://www.dwc.doshisha.ac.jp/current/generative_AI

7月13日
「チャットGPT」など対話型生成AIとの向き合い方について
東海学園大学 学長 石川清
https://www.tokaigakuen-u.ac.jp/news/detail.html?id=1226

7月14日
滋賀大学における生成AIの利活用について
滋賀大学 学長 竹村彰通
https://www.shiga-u.ac.jp/15539/
https://www.shiga-u.ac.jp/15529/

7月14日
生成AIの活用について-本学の方針-
徳島文理大学 AI・データサイエンス専門委員会
https://www.bunri-u.ac.jp/info/2023071400027/

7月14日
ChatGPT等の生成系AIの使用に関する留意事項について
岐阜聖徳学園大学 学長 観山正見
ChatGPT 等の生成系 AI の使用に関する留意事項について
http://www.shotoku.ac.jp/information/images/ChatGPT_for_student.pdf
http://www.shotoku.ac.jp/information/images/ChatGPT_for_staff.pdf

7月14日
ChatGPT等の生成系AIに関する基本方針
山梨学院大学 学⻑ ⻘⼭貴⼦
https://www.ygu.ac.jp/news/2022/

2023年7月19日水曜日

死の島

君たちはどう生きるかからの続き

宮崎駿君たちはどう生きるかイメージ参照絵画の例として,ルネ・マグリット(1898-1967)の「ピレネーの城」,アルノルト・ベックリン(1827-1901)の「死の島」,ジョルジョ・デ・キリコ(1888-1978)の「通りの神秘と憂鬱」があげられていた。

マグリットもキリコも良くご存知だったけれど,ベックリンって誰だっけ?と思っていたが,なんのことはない単に忘れていただけだ。小説の死の島福永武彦(1918-1979)の長編小説であり,自分の読書体験ベスト20には必ず入ってくる作品だ。

1977年の米島君との沖縄旅行では,飛行機の切符が手に入らず,神戸から船で与論島へ向かった。一泊目の夜は高知沖の太平洋上で船が揺れたため,座っているのが気持ち悪くて船室に寝ころんだままだった。そのとき,気を紛らわすために米島君に枕元で読んでもらったのが福永武彦の死の島(新潮文庫)だった。旅行後に急いで本屋へ走った。

相見綾子と萌木素子という韻を踏んだ二人の女性の名前と広島を暗喩する暗い島の絵が印象的で,シュールレアリスティックな構成の大作だ。福永武彦の小説は新潮文庫でそれまでも何冊か読んでいた。萌木素子が描いた暗い島の絵はベックリンの死の島とつながっていて,本文中でもベックリンの死の島の解説がされていた。なお,文庫本の表紙絵はムンクなのだった。

Wikipediaには死の島(小説)の解説はなかった。



写真:ベックリンの死の島(1880)

2023年7月18日火曜日

君たちはどう生きるか

7月14日,宮崎駿(1941-)監督のジブリ作品「君たちはどう生きるか」が公開された。

事前のプロモーション広告がまったくなかったので,ネットで噂になりはじめたころも何のことかわからなかった。そういえば,岩波文化人吉野源三郎(1899-1981)の小説「君たちはどう生きるか」の題名を借りて10年ぶりに新作をつくるという話があったのを思い出した。

アニメーション作品「君たちはどう生きるか」の評価は完全に二分されていて,説明不足で期待外れの失敗作というものと,難解だけれど素晴らしい芸術作品だというものだ。いずれにせよ簡単に読み解けるようなストーリーではないらしい。そのため,ネット上のさまざまな雑音やネタバレ(考証ぶったクイズごっこや食通ぶった矛盾探し)を排除して,まずは虚心坦懐にみるのが最も重要だという説が多い。

そうはいっても,情報はどんどん入ってくるのであった。(1) 宮崎駿の個人的な体験が物語のベースになっている,(2) アニメーション作成現場についてのメタファーで構成されている,(3) 過去のジブリ作品のオマージュやシンボルが多数ちりばめられている,(4) 原作に相当するものとして次の2作品がある。失われたものたちの本(ジョン・コナリー)と幽霊塔(江戸川乱歩版,黒岩涙香版は青空文庫に)。

ところで,作品中の13という数字が宮崎駿のジブリ長編アニメーションの数だという解説があったけれど,それはちょっとうまく整合しないような気がするがどうなのか。宮崎駿監督の長編アニメーション作品をあげれば次のようになるので13ともいえるかも。
1985(44) スタジオジブリ設立
1989(48) 魔女の宅急便
1992(51) 紅の豚
1997(56) もののけ姫
2013(72) 風立ちぬ

「君たちはどう生きるか」に一番近いのが「千と千尋の神隠し」らしいけれど, そういえばそれだってどんな話だったのかをみんな十分に理解しているわけではないような気がするので(自分だけ?),なぜ今回だけとくに不評なのだろうか。

P. S.  不評の原因を[4] が解読していた。さもありなん。


写真:1枚だけ公開されたポスター(スタジオジブリから引用)


[1]『君たちはどう生きるか』を理解できなかった人のためのネタバレ謎解き(海燕)
[2]『君たちはどう生きるか』を理解できなかった人のためのネタバレ謎解き(ちょっと上級編)(海燕)

2023年7月17日月曜日

複素平面上の三角形

Twitterでyujitachさんが,次の式が複素数(a, b, c)の入れ替えについて対称なのはなぜ?という疑問を呈していた。与式は,$\left| \sqrt{a-b}+ i \sqrt{b-c}\ \right| +\left | \sqrt{a-b}-i\sqrt{b-c}\  \right | $ である。見かけ上はまったく対称でないので不思議な感じがする。

Twitterの集合知はすごいもので,早速回答が寄せられていた。$x=\sqrt{a-b},\ y=\sqrt{b-c}, \ z=\sqrt{c-a}$とおくと,$x^2+y^2+z^2=(a-b)+(b-c)+(c-a)=0$である。

与式は$|x+i\,y|+|x-i\,y|$であり,その二乗は,
$(x+i\,y)(x^*-i\,y^*) + (x-i\,y)(x^*+i\,y*) + 2\left| (x+i\,y)(x-i\,y) \right |$ 
$= 2|x|^2+2|y|^2+2\left | x^2+y^2 \right | = 2 (|x|^2+|y|^2+|z|^2)$

したがってこれは(x,y,z)の入れ替えについて対称であり,(a, b, c) の入れ替えについても対称となる。その幾何学的な意味は,(a, b, c) が表す複素平面上の三点を結ぶ三角形の三辺の長さの二乗和である。

2023年7月16日日曜日

GRAPE

NHKのコズミックフロント「天文シミュレーションがコンピューターの世界を変えた!?」で,杉本大一郎(1937-)先生が登場されていた。まだ御存命でした。重力多体問題専用計算機GRAPEの開発における伊藤智義さんと牧野淳一郎さんの話題が中心で,戎崎俊一さんはストーリーにかんでいなかった。

そんなこともあって,ネットを調べていたら天文月報に杉本大一郎のロングインタビューが5回に渡って掲載されていてなかなかおもしろかった。杉本さんは長岡京の生まれで京大の工学部電子工学科に入学し,その後理学部物理学科に転科している。

大学院では,新設された原子核物理教室(後に物理学教室になる)の林忠四郎(1920-2010)研究室(天体核)の2期生となる。この天体核研究室の出身者には,佐藤文隆,蓬茨霊運,富田憲二,松田卓也,池内了,佐藤勝彦,富松彰など錚々たるメンバーが並んでいる。

杉本さんが大学時代にマルクス経済学や武谷三男(1911-2000)の弁証法の諸問題(三段階論)に大きな影響を受けたというところが,意外だった。もうひとつはエントロピーの捉え方であり,星の進化と宇宙の進化がともに非平衡熱力学的な世界観で統一的に考えることができるという話が展開されていた。元素合成のような具体論は野本憲一(1946-)に任せてしまい,もっと大きな話に関心があったようだ。


2023年7月15日土曜日

核融合スタートアップ

核融合に関する自分の知識が古いままなので,新しい話題についていけてない。

いちおう原子核物理を専門としていて,名大のプラズマ研を見学し,友達には核融合をテーマとして原研に就職した人たち(佐藤正泰君とか藤井常幸君とか)がいて,院生時代には,レーザー核融合研究センターの壮大な建物を横目に原付で核物理センターに通っていたので,それなりの耳学問的知識はあるのだけれど,そこまで真面目に勉強したわけではない。

自分のこれまでの乏しい知識はおよそ以下の通り。
 ○制御核融合の方式には,磁場閉じこめ慣性閉じこめがある。
 ○前者はトカマク型と,なんだかよくわからないヘリカル型に分けられる。
 ○後者はレーザ型と,あまりよくわからないイオンビーム型に分けられる。
 ○現在のトップはトカマク型の国際熱核融合実験炉ITERと,これに続くレーザ型のローレンス・リバモア国立研究所国立点火施設(NIF)のもの。ともに莫大なコストがかかる。
 ○これらの延長線上で実証炉や商業炉に到達するのはかなり先の話

そんなわけで核融合スタートアップの現状がどうなっているのか調べようとしていると,文部科学省の核融合の挑戦的な研究の支援の在り方に関する検討会の資料があった。京都フュージョン・エンジニアリングの共同創設者でもある武田秀太郎(1989-)のものだ。それらをまとめると+αで次の知識が得られた。

 ○核融合の研究開発が,国や大学から民間企業(スタートアップ)に移った。  
 ○高温超伝導による強磁場のトカマクでは装置のサイズが1/1000で済む。
 ○レーザー核融合のエネルギー充填を半導体レーザーにしてエネルギー効率を高めれば,パルス周期が非現実的な数時間から1/10秒以下にできる。
 ○FRC(逆転磁場配位型)などの新しい方式や燃料 p+11B が登場してきた。
 ○HelionやTAEを除き,中性子の運動エネルギーで湯沸かし発電の範囲に留まる。
 ○p+11Bはマシだが,中性子による放射化やトリチウムの問題は残っている。
 ○核融合炉でもトリチウムやHe3を巡って,核燃料サイクルという概念がある。

[1]TAE Technologies(米 1998-  1100億円)FRC p+11B
[2]General Fusion(加 2002-  500億円)Magnetically Confined Acoustic Compression
[3]Tokamak Energy(英 2009-  200億円)Spherical Tokamak 高温超伝導磁場
[4]First Light Fusion(英 2011-  100億円)Hyper Velocity Inertial Confinement
[5]Helion Energy(米 2013-  650億円)FRC D+He3 -> Microsoftが電力購入契約
[6]Commonwealth Fusion Systems(米 2018-  2600億円)Tokamak 高温超伝導磁場
[7]京都フュージョンエンジニアリング(日 2019-  120億円)
[8]EX-Fusion(日 2021-  18億円)レーザー核融合
[9]Helical Fusion(日 2021-  0.7億円)ヘリカル型核融合
[11]民間資金での核融合研究(武田秀太郎他)
[12]トカマク式核融合が超小型化(野澤哲生)
[13]核融合に第3の方式が登場(野澤哲生)

2023年7月14日金曜日

シンセティック・メディア(4)

シンセティック・メディア(3)からの続き

ニュースでデジタル分身という言葉をみかけた。シンセティック・メディアで生成するパーソナリティに対して,自分の使ってきた仮想人格という表現が妥当なのかどうか,ChatGPTにきいてみた。
Q:User
シンセティック・メディア が作り出すパーソナリティを何とよぶのが一般的でしょうか。(1) バーチャルビーイング,(2) 仮想人格,(3) デジタル分身,(4) その他 あるいはもっと適当なものがあれば紹介してください。

A:ChatGPT
シンセティック・メディアは、AIやコンピュータグラフィックスなどを使用して作られる人工的なメディアコンテンツを指します。それによって作り出されるパーソナリティは通常、「バーチャルビーイング」や「デジタル分身」などと呼ばれますが、用語は使用するコンテキストや状況によります。以下に各用語の一般的な使用方法を説明します。

バーチャルビーイング: これは、デジタル空間に存在する人工的なエンティティを指します。これらは通常、AIや他の形式の計算技術を使用して作成されます。バーチャルビーイングは通常、人間のように行動したり、人間のような特性を模倣したりします。 
仮想人格: この用語は、バーチャルリアリティ環境内のキャラクターを指すことが多いです。これらのキャラクターは人間の特性や行動を模倣することができ、また一部の設定では人間のユーザーと直接対話することができます。 
デジタル分身: これは、特定の人物、特に実在の人物のデジタル表現を指します。デジタル分身は、その人物がオンラインで行う活動や交流を補完するため、または代替するために使用されます。 
その他: 他の関連用語には「AIアバター」、「デジタルヒューマン」、「バーチャルインフルエンサー」などがあります。これらの用語は、特定の種類のシンセティックメディアや特定のコンテキストで使用されることが多いです。
これらの用語は一部重複している部分がありますが、それぞれ特定のニュアンスや用途を持っています。どの用語が最も適切かは、そのパーソナリティがどのように作られ、どのように使用されるかによります。

2023年7月13日木曜日

大学教育とChatGPT(13)

大学教育とChatGPT(12)からの続き

前期末の試験やレポートが近づいてきたので,再び各大学からの注意喚起が増えてきたような気がする。現状は森木銀河さんのページ(https://note.com/pogohopper8/n/n3126b312f209)が最も詳しい。ところでgoogle検索の仕様が変わったのだろうか。+site:ac.jp では絞り込みができず,ac.jp だけにしたほうが良いようだ。そこで,ac.jp 生成AI|生成系AI|ChatGPT|人工知能  で google検索している。

文部科学省が7月13日付けで,大学・高専における生成 AI の教学面の取扱いについてという通知をだした。その趣旨は,
(1) 各大学・高専において、具体的に行われている教育の実態等に応じて対応を検討することが重要であり、学生や教職員に向けて適切に指針等を示すなどの対応を行うことが望ましい
(2) 技術の進展や指針等の運用状況などに応じ、対応を適宜見直していくことが重要である。
ということだ。後半の留意すべき観点では,(1) 生成 AI と学修活動との関係性、成績評価,(2) 生成 AI の技術的限界(生成物の内容に虚偽が含まれている可能性),(3) 機密情報や個人情報の流出・漏洩等の可能性,(4) 著作権に関する留意点,の4項目について言及している。

6月19日
授業におけるChatGPT等生成AIの利用方針について
松山大学 学長 新井英夫

6月27日
学修における「ChatGPT」等の生成系 AI の利用について
横浜市立大学 学長 相原道子

6月27日
生成AI(生成系AI)の使用について(ガイドライン)
玉川学園理事(高等教育担当) 小田眞幸・玉川大学 ICT教育研究センター長 倉見昇一

6月30日
教育活動における生成系AIの利用に関する留意事項について
北海道教育大学 理事(教育担当) 海老名尚

6月30日
生成AI(ChatGPT等)の利用について
京都ノートルダム女子大学

7月3日
本学における生あきょう成系AIへの対応について
京都先端科学大学 学長 前田正史

7月3日
Chat GPT をはじめとする生成 AI の利活用について
宇都宮共和大学

7月4日
聖泉大学における ChatGPT 等の生成系 AI の使用に関する基本方針
聖泉大学 学長 唐楽寧

7月6日
生成系AIの利用に関する留意事項について
札幌大学 学長 大森義行

7月5日
生成AIの活用について
名古屋大学 副総長(教育担当) 藤巻朗

7月5日
生成AIを利用したレポート課題等の作成における留意点と成績評価における取り扱いについて
大阪法科経済大学 学長 中井英雄

7月5日
生成AI(人工知能)の利用について
志學館大学

7月6日
ChatGPT等の生成系AI利用の留意事項について
園田学園女子大学 学長 大江篤

7月6日
学習における生成 AI の利用について
埼玉大学 理事(教学・学生担当)・副学長 柳澤哲哉

7月6日
生成系 AI の利用について
仙台大学 学長 髙橋仁

7月7日
定期試験・レポート作成等における生成系AIツールの使用について
関西大学 副学長(教育推進担当)

7月7日
学生の皆さんへ~生成AIの利用における基本指針と注意点~
広島国際大学

7月7日
生成AIの利用に関する留意事項
千葉科学大学

7月10日
本学における生成系AI 活用に関する基本方針について
ノートルダム清心女子大学 学長 シスター 津田葵

7月11日
本学の教育現場における生成AIへの向き合い方
滋賀医科大学 理事(教育・学生支援・コンプライアンス担当)・副学長 松浦博
滋賀医科大学 情報総合センター教授・医療情報部長・マルチメディアセンター長 芦原貴司

7月12日
文星芸術大学における生成AIの利用ついて
文星芸術大学 学長 田中久美子

7月12日
ChatGPT 等の生成系 AI について
創価大学 通信教育部長 吉川成司

2023年7月12日水曜日

ローラ・ニーロ

1969年の11月ごろヒットした,フィフス・ディメンションウェディング・ベル・ブルースである。

作詞作曲者がシンガー・ソングライターのローラ・ニーロ(1947-1997)であり,1967年に彼女自身のデビューアルバム「モア・ザン・ナ・ニュー・ディスカバリー」に収録されていたとは知らなかった。そもそも,ローラ・ニーロって聞いたことあるわという自分の知識≒記憶が,ニーノ・ロータ(1911-1997)やロバート・デ・ニーロ(1943-)と混線しているのであった。いずれもイタリア系なのでよけい話がややこしい。

ローラ・ニーロが作った楽曲は主に他のアーティストがヒットさせることになった。フィフス・ディメンションがヒットさせた曲でいえば,ウェディング・ベル・ブルースの他に,ストーンド・ソウル・ピクニックスィート・ブラインドネスイーライズ・カミングブローイング・アウェイセイヴ・ザ・カントリーとなっている。いずれも懐かしい。

ブラッド・スウェット・アンド・ティアーズアンド・ホエン・アイ・ダイもローラ・ニーロの作詞作曲なのだけれど,ピータ・ポール・アンド・マリーがこれを歌っているのは聞いたことがなかった。

1960年代後半から1970年代初めのにかけての中高生時代,洋楽ポップスとSFが趣味だった。入門はビージーズや後期ビートルズからだった。中でも誰を一番推していたかというと,フィフス・ディメンションだった。自分が最初に買ったアルバムも,フィフス・ディメンションの日本版のファーストアルバムだった(たぶん,海外の1stアルバムUp Up and Away と2nd アルバム The Magic Gardenを日本向けに組み合わせたのだと思う)。そんなわけで,3edアルバムの Stoned Soul Picnic が日本ではセカンドアルバムとなったのではないか。その後の,The Age of AquariousPortrait とあわせて4枚ものアルバムを買ったのはフィフスディメンションだけだった。


2023年7月11日火曜日

Threads(2)

Threads(1)からの続き

7月6日から始まったThreadsの登録数が5日で1億件を越えた。ChatGPTより速いスピードだった。Twitter,Mastodon,Bluesky,Threadsと巡回するのが面倒になってきた。そこで,自分が使ったことのある主なSNSについてまとめみる。

Facebook(2004.2-):憶えていないけれどいつから使い始めたのだろうか。ここに登場するのは知り合いばかり。あと,若干の有名人をフォローしているのでその情報は貴重だ。萩原雅之,橋本大也,増井俊之,岡口基一,神田敏晶,千坂恭二などなど。高齢化が進んでいて,若者は参加していない。友達の数は395人。

Mixi(2004.2-):これもいつから使い始めたのだろうか。誰かのページを見ると足跡が残るのだった。一次かなり盛り上がっていたが,アカウントは削除してしまった。

Twitter(2006.3-):2008年8月11日にiPhoneを買って8月18日にまちがえて,TwitterクライアントのNatsuLionをインストールして以来だ。Twilogに利用記録がある。最近のタイムラインアルゴリズムはグダグダ担っていたが,イーロンマスクに買収されて以後,さらにもろもろ全部おかしくなってしまった。それでも多くの人が残っているのでやめられない。フォロー中915人,フォロワー 953人,投稿数9758件。

Instagram(2010.10-):登録したのはiPhoneのアイコンが古いバージョンのときからなのだが,実際に写真をあげるようになったのは最近のことである。キラキラ投稿が多い中,地味に散歩写真をあげている。フォロー中331人,フォロワー288人,投稿数695件。

Mastodon(2016.3-):2017年4月の最初のブームで複数のMastodonインスタンスに登録した。そのうち自分のアカウントが残っているのが,日本のメジャーインスタンスであるmstdn.jpと数式を投稿できるmathtod.onlineの2つだけだ。サーバーが分散しているので,一番期待できるはずなのだけれど・・・。フォロー中285人,フォロワー319人。

Bluesky(2023.1-):結城浩さんから招待コードをもらうことができて,2023年5月中旬から使い始めた。参加者総数が少ないので,なかなか必要な情報が得られない。タイムラインはOKかと思われる。フォロー中86人,フォロワー32人,投稿数6件。

Threads(2023.7-):このムーブメントに乗り遅れないようにと予約したものの,ぼやぼやしていたら100万人番目は越えてしまっていた。まあ1億から見れば,1%の程度の位置にはあるのだけれど。タイムラインアルゴリズムがいまいちなのと,真面目な話をしにくい雰囲気が煽られている。フォロー中336人,フォロワー102人,投稿数11件。


2023年7月10日月曜日

エアレボルーション

最近お薦めに上がってきたエアレボルーションは,島田雅彦(1961-)と白井聡(1977-)とジョー横溝(1968-)が毎週ゲストを招いて対談するチャンネルだ。

長い対談が月額770円で週3回配信されるが,そのうち前半の40分から120分ほど無料で公開されている。外山恒一,鈴木涼美,柄谷行人,鈴木エイト他,多彩なゲストが続いている。無料分だけを見ているが,1月に配信されていた金平茂紀(1953-)の回がおもしろかった。

金平さんは昨年秋まで報道特集のキャスターをしていて,ときどきみていたが,ソ連崩壊の1991-1994までJNNのモスクワ支局長として派遣されていた。島田雅彦は東京外国語大学のロシア語科出身で,白井聡は研究テーマがレーニン主義,社会思想,政治学だ。このベストメンバーがウクライナ=ロシア戦争について語っていた。

金平さんはこの正月に1週間ほどモスクワに観光客として旧知の人を訪ねており,現在のモスクワの様子を伝えていた。我々が目にする耳にするのは,西側のフィルターを通過して,日本のマスコミによって増幅された大政翼賛会的な情報だけなので,新鮮なものがあった。

ロシアは見かけ上ほとんど疲弊しておらず,このままだとウクライナ戦争がベトナム戦争化しそうだとのことだ。アメリカがクラスター爆弾を提供するというのも日本のテレビではシラッと何も問題がないかのように伝えられている。

昨年2月に始まったウクライナ戦争と7月の安倍首相殺人事件を奇貨として,防衛費が倍増され南西諸島へのミサイル配備が進むということになってしまった。

2023年7月9日日曜日

警告メッセージ

7月7日七夕に遭遇した怖い話。

Blogspot(google)から警告がとどいた。最初は,投稿したページになにやら警告マークが出てきて何が何だかよくわからずに焦った。ログアウトして再アクセスしてみると,警告付ではあるもののワンクッションおけば一応は見える最低限のレベルものだった。

YouTube(これもgoogleだ)で収益化できなくなった哲学系ユーチューバ−じゅんちゃんが遭遇した理不尽な話などを散々聞いていたので,これはまずいことになったと思った。あらためて自分の記事を読み返してみて,話題のイーロンマスクとTwitterの話がまずかったのか,最後のBlueskyの招待枠の話がまずかったのか,表現に過激なところがあったのか,誰かに刺されたのか・・・わからない。気になるところをすべて無難なものに修正して再投稿したが,同じ警告がついてしまった。がーん。

少し頭を冷やしていると,googleアカウントにBlogspot運営側からメールが届いていたのに気がついた。引用すると次のようなものだった。
 ご存知のこととは存じますが、Blogger のコミュニティ ガイドライン では、Blogger で許可されるコンテンツと禁止されているコンテンツについて概説されています。Blogger では、お客様の「 Bluesky(2)」というタイトルの投稿について審査の必要があるとの報告を受けました。審査の結果、この投稿には慎重に扱うべきコンテンツが含まれていると判断し、投稿を閲覧しようとした読者に警告メッセージが表示されるようにいたしました (投稿の URL: 略)。読者がこの投稿とブログを閲覧するには、この警告を承諾する必要があります。

さらに,

お客様のブログ投稿に警告メッセージが表示されるようになった理由:この投稿のコンテンツが、アダルト コンテンツに関する Blogger のポリシーに違反していることが判明いたしました。

 えーっ,それはないわ。修正して再審査を申し込めということだけれど,どこがアダルトなのかさっぱりわからない。さらに熟考してみると,どうやら参考コードのなかの英文字列がやや微妙だったことに気付いた。これを直して再審査を申し込んだがなしのつぶてである。

しかたがないので,新しく微修正版(アルファベット3文字×2箇所修正)を投稿したところ無事にパスした。

教訓:言論や表現の自由は,その手段をAIでブラックボックス化されたビッグビジネスに握られている限り,常に風前のともしびであり,相当なコストを費やすことなしに説明責任など果たされることは期待できない。分散IDと分散SNSの普及が待たれる。

2023年7月8日土曜日

Threads(1)

Bluesky(2)からの続き

MetaがはじめたTwitterにかわるSNSがThreadsだ。7月6日8:00ごろから時間前倒しでリリースしたところ,2時間で200万人,4時間で500万人,7時間で1000万人,半日で3000万人,2日7000万人のユーザーを集めたらしい。

メタの旧社名はフェイスブックであり,マーク・ザッカ—バーグ(1984-)がメタバースに入れ込むまではSNSの会社だった。フェイスブック社は2012年に写真・動画共有SNSのインスタグラム社を買収した。インスタグラムは,2010年にAppStoreに登場し,2ヶ月で100万人,8ヶ月で500万人,約1年で1000万人のユーザを集めている。現在のアクティブユーザ数は10億人のオーダーだ(登録アカウントは20億)。インスタ映えは普通名詞になってしまった。

Threadsをはじめるには,インスタグラムのアカウントが必要である。巧妙な作戦だ。インスタグラマー10億人のうち1%が参加すれば,簡単に1000万人に達するわけだ。周到に準備されたためか,他のマイナーなSNSとは異なり,これだけ短時間に集中して負荷がかかるスタート時のアクセスを軽々とこなしているように見える。Blueskyはそれに対応できるだけのリソースを持たないので招待制で細々とやってきたわけだ。

ユーザインターフェイスや,機能についてはまだ揺らいでいて評価は定まっていないけれど,迷走状態のTwitterがさらに霞んでしまいそうな雰囲気だ。自分が使えるようになって最初のタイムラインには,瀬戸弘司やドリキンの顔とフォローもしていないスレッドが流れてきて訳が分からなかったが,どうやらフォロー数が少ない場合,アルゴリズムでお薦めをコントロールしているらしい。その他の特徴は以下の通り。

 ○投稿文字数は500字まで,写真10枚,動画は5分まで
 ○Web版はないが(アプリに誘導される),自分の投稿へのリンクは可能
 ○ハッシュタグや検索(ユーザアカウントを除く)は機能しない
 ○いいねの数はわかるが,リツイート=再投稿の数はわからない
 ○タイムラインの+マークからすぐにフォローできる
 ○引用とRT(再投稿)はあるが,DMはない
 ○アカウント削除には,インスタグラムのアカウントごと削除する必要
 ○社会派,物理屋などはまだあまり流れ着いていない

そんなわけで,7月6日はThread祭りの日だった。フォロー関係の構築で一日がつぶれる。



写真:Threadsの参加証@Instagram(2023.7.6)

[4]Threads国内フォロワー数(UserLocal)
[6]世界ソーシャルメディア統計 (Stat Counter)


2023年7月7日金曜日

Bluesky(2)

Bluesky(1)からの続き

いよいよTwitterがややこしくなってきた。7月1日,イーロン・マスク(1971-)はTwitterアカウントの種類に応じて一時的に閲覧回数の制限を設けた。認証済みアカウントは6000件(1万件),未認証アカウントで600件(1000件),作成されたばかりの未認証アカウントで300件(500件)というわけだ(括弧内は7月2日の泥縄的修正値)。制限の理由については,インターネット上のデータ収集や処理における不正な操作の急増に対応するためとしている。

実際には,TwitterがAPI課金を急騰させたことを原因とするウェブスクレーピングの増加だとか,サーバーを運用しているクラウドとの契約の関係だとか,Twitterコードのバグが自分自身に対するDOS攻撃をしたのが原因だとか,諸説がある。いずれにせよTwitterのコントロールがいよいよ効いていないことが明らかになった。

このため,再びTwitterから他のSNSへの流失が進んでいるらしい。その候補の一つはジャック・ドーシー(1976-)がはじめたBlueskyだけれど,招待制の登録者はまだ20万人だ(Twitterは4.5億人)。他に T2 とか MetaのThreads が話題になっている。どうなることか。現在のところ,Twitterに流れる情報の方がまだまだ有用度が高い。

そのBlueskyの歩き方というドキュメントがmd形式で流れていた。pdfに変換しようと考えた。たぶんpandocが使えるはずなのだが,調べてみると一手間必要だった。これをまとめると次のようになる。
$ brew install pandoc ✓
$ brew cask install mactex ✓
~/.zshrc に次の行を追加
export PATH=/usr/local/texlive/2019/bin/x86_64-darwin/:$PATH
$ source ~/.zshrc
$ pandoc bluesky.md -o bluesky.pdf --pdf-engine=xelatex -V documentclass=bxjsarticle -V classoption=pandoc
これをシェルスクリプトにすると
$ cat md2pdf.sh
#!/bin/zsh
# usage mdspdf.sh test
# input test.md output test.pdf
#
pandoc $1.md -o $1.pdf --pdf-engine=xelatex -V documentclass=bxjsarticle -V classoption=pandoc

これで無事にmdファイルをpdfファイルに変換できた。

P. S. Blueskyの招待コードが若干余っているので必要な方はメール,TwitterのDM,Facebook Messengerなどでご連絡ください。