最小二乗法(2)からの続き
物理量 $x$を設定したとき,$y$が測定される。$n$回測定では,$(x_1,\ y_1),\ (x_2,\ y_2),\ \cdots (x_n,\ y_n)$ が得られたとする。2つの物理量の間には,$y\ =\ a x + b$という1次関数の関係があって,$(a,\ b)$にも物理量としての意味がある。
この$(a, \ b)$を求めるため,$\displaystyle S(a,b)=\frac{1}{n}\sum_{i=1}^n (y_i-a x_i -b)^2$を最小化するという条件を課す。すなわち,$\frac{\partial S}{\partial a}=0, \frac{\partial S}{\partial b}=0, $これから次の$(a,\ b)$に関する連立方程式(正規方程式)が得られる。
$\displaystyle \frac{1}{n} \sum_{i=1}^n x_i \bigl( y_i - a x_i - b \bigr) = 0 \rightarrow \quad a \overline{x^2} + b \overline{x} = \overline{xy} $
$\displaystyle \frac{1}{n} \sum_{i=1}^n \bigl( y_i - a x_i - b \bigr) = 0 \quad \rightarrow \quad a \overline{x} + b = \overline{y} $
これを解くと次の解が得られる。ただし,$\Delta = \overline{x^2} - (\overline{x})^2$ である。
$a=\frac{1}{\Delta}\bigl(\overline{xy}-\overline{x} \cdot \overline{y} \bigr)$
$b=\frac{1}{\Delta}\bigl( (\overline{x^2}\cdot \overline{y}-\overline{x} \cdot \overline{xy} \bigr)$
0 件のコメント:
コメントを投稿