2020年6月30日火曜日

「役に立たない科学」が役に立つ

エイブラハム・フレクスナーロベルト・ダイクラーフによる『「役に立たない科学」が役に立つ』が,初田哲男さんの監訳によって近々東京大学出版会から登場する。著者は,プリンストン高等研究所の初代および現在の所長である。この本は,この二人のエッセイ,明日の世界(ロベルト・ダイクラーフ),役に立たない知識の有用性(エイブラハム・フレクスナー)を中心に構成されている。後者は1939年にHerpars Magazine に掲載されたものでありすでに著作権が切れており,2013年の3月にあの山形浩生によって「役立たずな知識の有益性」として訳出されている。このタイトル比べただけでも,山形大丈夫かと思ってしまいそうだ。本は読んでいないけれど,2017年12月のダイクラーフの講演資料をみるとその趣旨がとてもよく理解できた。

図 The Usefulness of Useless Knowledge 原著の表紙(引用)


2020年6月29日月曜日

iPhone SE(1)

なにかおかしいように思い,iPhone 6Sをバッテリケースからはずしてみると,おなかが割れていた。たぶん,内蔵バッテリが膨らんだのだと思う。1,2年前にも同様の症状があったような気がしたけれど,記憶の霧のかなたである。

そんなわけで,次の機種として iPhone SE (第二世代)をいろいろと調べてみた。CPUはA13 Bionicの6コア3GBでフロントカメラが7Mピクセルになっている。外側のカメラは12Mピクセルなので変わらないのか。画面サイズは4.7インチで1334×750のまま。サイズも0.1〜0.2mm程度大きくて,138.4×67.3×7.3mm,重量は5gふえて148g。TouchIDのボタンは残っているので,ほとんど現状と違和感ないのではと思われるがどうだろう。イアホンミニジャックはなくなったのだけれど,lightning端子のEarPodsはついてくる。

問題はアプリや環境の移行だけれど,クイックスタートが使えるとある。いままで,使えなかったApple Payに対応している。また,NFCにも対応している。このあたり,何かおもしろいことができそうな気もするけれど,どうかな。iPhone 6Sはかなり使ってきたような気がしたけれど,2016年の正月に何故か香里園のソフトバンクショップで買っているので,まだ4年半だった。MacBook Pro は2012年のモデルなので,こちらはもう8年経っている。新しいOSが走らないので,むしろこちらを何とかしたかったのだけれど,むむむ。


追伸写真:バッテリケース上のおなかが割れた iPhone 6s (2020.7.4撮影)

2020年6月28日日曜日

THE MATH(S) FIX

THE MATH(S) FIX スティーヴン・ウルフラムの弟のコンラッド・ウルフラムによる数学教育革新のための青写真についての本である。

ウェブサイトのはしがきを訳すると,こんな感じだった。

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AI時代の教育の青写真

なぜ私たちは皆,生涯のうち何年にもわたって数学を教えられているのか?それは本当に役に立っているのだろうか,あるいは,ほとんどが失敗であり多くの人に学びの力を与えられていないのか?それはAI時代に不可欠なものか,それとも時代遅れの通過儀礼なのだろうか?

"The Math(s) Fix: An Education Blueprint for th AI Age" は,なぜ数学教育が世界的に危機的状況にあるのか,また,どうして根本的に新しい主流科目を創るのことが唯一の解決策なのか,を明らかにする画期的な本だ。

この本は,今日の数学教育が,現代的な計算・データ科学・人工知能(AI)が必要とされる現代社会を発展させるための機能を十分果たしていないということを主張する。その代わりに,学生はコンピュータが得意とするものと競争することを強いられて負けてしまっている。

本書は,「数学が苦手」であることが,学習者のせいというより,科目の失敗が原因であること,すなわち,教育のエコシステムが行き詰まり,学生・親・教師・学校・雇用者・政策立案者が,現実世界の要求に追いつこうと間違った方向に走っていることを説明する唯一の本である。

しかし,この本はさらに先を行くものである。問題を解決して,AI時代の教育の普遍的な改革の種を蒔くために,学校における中核的な計算思考科目としての完全に代替的なビジョンを初めて提示しているものだから。
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

これがたぶんコンピューテーショナル・シンキング(計算論的思考)の王道なのだと思われる。でも,GIGAスクール構想にみんな出払ってしまっており,プログラミング教育とその周辺の話題はすっかり霞んでしまっていた。


図:THE MATH(S) FIX の表紙(Wolfram Media から引用)



2020年6月27日土曜日

磁場のエネルギー

点電荷からなる系の場合に,クーロン力の位置エネルギーの総和を時間に依存しない電場に対するマクスウェル方程式をつかって変形すると電場のエネルギー密度の体積積分になって,遠隔相互作用から近接相互作用への論理的な切り替えを納得させるトピックとなっている。

同様に,環状電流からなる系の場合に,電流間の力を導く位置エネルギーの総和を時間に依存しない磁場に対するマクスウェル方程式をつかって変形すると磁場のエネルギー密度の体積積分になる。このときの中間過程に電流密度とベクトルポテンシャルの内積の体積積分の1/2が出てくる。これは電場の場合に電荷密度とスカラーポテンシャルの積の体積積分の1/2が出てくることと対応していて,電荷と電流の並行な式がとてもきれいにみえるのだけれども,符号問題がなかなかすっきりしない。

単純に考えると,平行電流間には引力が働き,電流がつくるベクトルポテンシャルは電流と平行であることから,電流密度とベクトルポテンシャルの内積にマイナスをつけたものをエネルギー密度だとするのが物理的な直感と一致する。一方で,上の環状電流の場合では,マイナスをつけないものをエネルギー密度として計算をすすめている。

この符号問題については,砂川さん,前野さん,太田さんの教科書ではいちおう説明がされている。例えば,前野さんの教科書では,あらかじめ定まっている電流の配置(外部磁場への電流の配置)などの場合にはマイナスがつき,その状態にへもってくるように電流を流すのに必要なエネルギーを考える場合にはマイナスがつかないということなのだが,どうも十分に腑に落ちてこない。

おまけにダブルカウントをさけるために1/2がついたりつかなかったりするものだから,授業でどうやって説明したものか思案のしどころである。あるいは太田さんの教科書にあるように磁束変化に対する説明が不可欠なのかもしれず,静磁場の範囲でまかなえるかどうかも微妙だ。

2020年6月26日金曜日

平沢進(2)

平沢進(1)からの続き

セグウェイの話題と平沢進の話題がなにやらからまっていた。youtubeをちょっと見たところセグウェイは見当たらないのだけれど,どうなっているのかな。

平沢進のアルバムをざっとながめてみて,アマゾンでの評価数を()に,平沢進の人気おすすめランキング15選の順位を[]にいれて,アルバムタイトル以外の気になった曲名を付加したものが次の表だ。「救済の技法」とか「賢者のプロペラ」とか「白虎野」の評判がよさそうかな。ほとんどどれも同じにきこえる瞬間があって困ったものだけれど,なんだかはまってしまいそう。youtubeでかなりの楽曲が聴けるのがありがたい。

1 1989  時空の水(31)[7] ハルディンホテル
2 1990 サイエンスの幽霊(21) 世界タービン
3 1991 Vierual Rabbit(23)[8] バンディリア旅行団
4 1994 AURORA(17)[14] トビラ島
5 1995 Sim City(40)[15]
6 1996 SIREN(26)[5]
7 1998 救済の技法(86)[2] TOWN-0 PHASE-5 庭師キング
8 2000 賢者のプロペラ(39)[3] ロタティオン
9 2003 BLUE LIMBO(24)[12] 高貴な城
10 2006 白虎野(68)[4] パレード
11 2009 点呼する惑星(51)[11]
12 2012 現象の花の秘密(70)[*]
13 2015 ホログラムを登る男(86)[5]

2006 Paprika(31)[9]
2010 突弦変異(31)[*]
2010 変弦自在(39)[13]
2014 Arch Type(43)[1]
2016 Ash Crow(64)[10]

核P-MODEL
2004 ピストロン(52)
2013 Giponza(73)
2018 回=回(83)

2020年6月25日木曜日

セグウェイ

セグウェイが7月15日をもって生産中止されることになった。2001年に鳴り物入りで発表され注目を集めていたけれど,日本では公道を走れないし,あの価格だったのでまあ仕方がないのかもしれない。

最初にセグウェイに乗ったのは,2010年の夏休み,アラスカ州アンカレッジ市内のセグウェイツアーだった。次の日に日本に帰るということで,アンカレッジのホテル(ヒストリック・アンカレッジ)の近くを散策していたらセグウェイの市内ツアーを見かけた。はじめはスルーしたのが,やっぱり試してみようかということになってお店に戻ると,もう定員を締め切ったという。あす日本に帰るので,そこをなんとかとねばると,やさしいおじさんは2人を追加してくれた。

ヘルメットを借りて,近所の空き地まで行って,操作に慣れるためにしばらく練習したが,そんなに難しくはなかった。ツアー参加者は我々を含めて6〜8人くらいか。市内の普通の歩道や車道をゾロゾロと進むのである。アラスカ鉄道のアンカレッジ駅の向こう側を回るコースは小一時間くらいだったか。途中に公園,展望台,坂道などもある楽しいコースだったが,なんとか無事に出発点に帰り着いた。アンカレッジは人口30万弱で,そんなに混雑した街ではないとはいえ,面倒な規制でがちがちの日本と違って普通に市内を走れるのがすごいと思う。

その後,日本に帰ってしばらくした秋の日,明日香の高松塚記念公園辺りでセグウェイツアーがあるというのをどこかで見つけて,早速家族で申し込んだ。こちらの方も最初に少し練習をした後で,晴れた日の公園内をスルスルと列をなして進むのであった。最後の最後にバランスをくずしてしまって,全コースをクリアできなかったのが残念。

 

写真:アンカレッジ市内のセグウェイツアー(2010.8.30)


2020年6月24日水曜日

WWDC2020

アップルの開発者カンファレンスWWDC2020は新型コロナウイルス感染症蔓延のために,無観客で放映された。ティム・クックの挨拶のはじめには,ジョージ・フロイドの死にともなう人種差別撤廃についてのアップルの方針が示された。

ソフトウェアの開発状況や今後の展開が話題の中心であり,iOS,iPadOS,watchOS,tvOS,macOSの順に上級副社長のクレイグ・フェデリギ(もともとはNeXTのひとなのか)が中心となって説明が進んでいった。例によって細かなつくりこみやデザイン変更を凄い(incredible)凄い(gorgeous)と連呼して進める部分にはあいかわらず辟易するのだった。どうやらAndroidoの後追いらしのだが,ほとんどどうでもいい機能ばかりが複雑に追加されていく・・・orz。

Think Simple(Ken Segall)の精神はいったいどこにいったのだろう。地図関係は日本では期待できないし,翻訳機能だけは少したのしみだけれど,Siriもあまり信頼していないので微妙。後は,iPadOSとmacOSがどこまで接近融合していくのかが個人的な関心のポイント。翻訳機能と並ぶもうひとつの期待の柱はARなのだけれど,これはスルーされていた。

今回のポイントはやはり,Apple Siliconへの移行だ。日経朝刊が一番すっきりまとめていたけれど,マックのCPUは,1984 Motolora −(10年)→ 1994 Power PC −(12年)→ 2006 Intel −(14年)→ 2020 Apple Silicon(ARM)という変遷をたどっている約10〜15年でCPU交代が行われるわけか。なお,MacOSX は2001年に導入されており,次のとおりである。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
2001 Mac OS X 10.0 (Cheetah) → iPod
2001 Mac OS X 10.1 (Puma)
2002 Mac OS X 10.2 (Jaguar)
2003 Mac OS X 10.3 (Panther)
2005 Mac OS X 10.4 (Tiger)
2007 Mac OS X 10.5 (Leopard) → iPhone
2009 Mac OS X 10.6 (Snow Leopard)
2010 Mac OS X 10.7 Lion → iPad
2012 OS X 10.8 Mountain Lion
2013 OS X 10.9 Mavericks
2014 OS X 10.10 Yosemite
2015 OS X 10.11 El Capitan
2016 macOS 10.12 Sierra
2017 macOS 10.13 High Sierra
2018 macOS 10.14 Mojave
2019 macOS 10.15 Catalina
2020 macOS Big Sur(いよいよここから11.xシリーズになるようだ)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
やはり,インテルチップへの移行が完了して落ち着いたSnow Leopardのころが一番よかったような気がする。

前回のPowerPCからインテルへの移行もわりとスムーズだったので,今回もそれほど心配ではないけれど,悲しいかな,手元にあるMacBook Pro mid 2012 はもうmacOS Big Surに対応しないのである(iPhone 6sは iOS14に対応するようだけれど)。そろそろ機種交換が必要か。次の候補はあの変なTouch Barがついていない MacBook Air にしたいものだけれど・・・もうApple のサイトでアクセサリをみても CDドライブは出てこないのであった。むむむ。あと,iPhone SE2用のバッテリケースもありません。むむむ。

富岳もARMベースのようだし,ARMアーキテクチャの天下がやってきたということか。

追伸:グーグルでWWDC20XXの画像検索をいくつか試してみて下さい。今回のWWDC2020のデザインがもっともダサイと感じる私の感覚はおかしいのだろうか?

[1]OSXの終焉

2020年6月23日火曜日

富岳100京

神戸の理化学研究所計算科学研究センターに設置されている富士通製のスーパーコンピュータ富岳が,ISC High Perfomance 2020 Digital で発表されたスーパーコンピュータのTOP500で首位を獲得した。ほぼ半年ごとに欧州と米国でスーパーコンピュータのランキングが発表されるが,次は米国アトランタで開かれる国際スーパーコンピュータ会議(SC20)の予定だ。

理研のプレスリリースによれば,6部門中4部門で首位を占めたということで,それはいったいなんだということになった。(1) TOP500:これはLINPACKのベンチマークである。密行列の線形演算の能力を競うもので最も古典的なベンチマーク。(2) HPCG:疎行列を係数とする連立1次方程式を共役勾配法で解くためのものであり,これがスーパーコンピュータの実用的な計算の実態に即したものだと思われる。(3) HPL-AI:ディープラーニングでは低精度計算が多用されることから,そのような状況での演算性能の評価が必要となってきた。(4) Graph500:ビッグデータ解析に使われる,超大規模グラフの探索能力を試すものであり,演算性能に加えてメモリやネットワークへのアクセス性能も重要である。ここまでの首位を占めたということだ。
この他に,(5) IO-500:データの入出力性能らしいが,詳細はこのあたりをみるとよいかもしれないし,そうでないかもしれない。 (6) Green500:省エネ性能を評価するための,消費電力当りの計算性能を比較したもの。この分野は日本勢が強い。前回は富岳のプロトタイプがトップだったが,今回は,日本のプリファードネットワークスのMN-3が首位で,PESYコンピューティングのNA-1が3位につけている。

京の後継機の名前が富岳になると聞いたときに,なんだかなあ,とおもったのだけれど,これは富岳100京(京の100倍の計算性能を持つ)ということで,富嶽百景のもじりだったとか。それなら許します。

P. S. 京コンピュータは,2011.11のTOP500 で10^16 Flops(1京Flops)をたたき出して首位になっている。富岳は2020.6 のTOP500で 40京Flops なので,富岳40京。まだ100京には達していない。


写真:富岳はブルーなのか(理研のページより引用)


2020年6月22日月曜日

Griffithsのr

デヴィッド・J・グリフィスはポートランドにあるリード大学の物理の名誉教授。1964年にハーバードの物理の B. A. をとっている(修士も博士もハーバード)のでそろそろ80歳くらいだろうか。電磁気学や量子力学や素粒子物理学の教科書で有名だ。電磁気学の教科書といえば,J.D.ジャクソンが定番だとおもっていたが,ちょっとやさしめのグリフィスの教科書がよく使われているようだ。グリフィスの教科書では,電磁気学で多用される' をスクリプトの r を使って表している。確かにこれによって,式の見通しがだいぶよくなる。教科書をみると,MS WordユーザはKaufmann フォントを使え,TeXユーザは自分のホームページを参照せよとあった。見本をちょっと直して使えるようになった。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

\documentclass{report}


\usepackage[dvipdfmx]{graphicx}


\def\rcurs{{\mbox{\$\resizebox{.16in}{.08in}{\includegraphics{ScriptR}}\$}}}

\def\brcurs{{\mbox{\$\resizebox{.16in}{.08in}{\includegraphics{BoldR}}\$}}}

\def\hrcurs{{\mbox{\$\hat \brcurs\$}}}


\begin{document}


Here's a sample:


\$\resizebox{.16in}{.08in}{\includegraphics{BoldR}}\$


\begin{equation}

{\bf E} = {1\over 4\pi\epsilon_0}\int {\rho\over \rcurs^2}{\hrcurs}\,d\tau.

\end{equation}


\end{document}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

図 スクリプトのTeXサンプル


2020年6月21日日曜日

部分日食

今日(6月21日,夏至)の夕方,日本全国で部分日食がみられるはずだった。奈良では残念ながら曇り空で観測できなかった。19時前の今ごろになって太陽が顔を出したが遅かりし由良之助。372年ぶりの夏至の日食であり,次の夏至の日食は2802年の予定らしいのだった。日食の一覧によれば,日本で見られる次は,2023年4月に部分日食,2030年6月に金環食らしい。がんばって2035年の皆既日食まで生き延びたいものだけれど・・・どうかしら。

太陽と月の半径はそれぞれ696,300kmと1,738kmなので,その比は400.6である。一方,地球から太陽までの距離と地球から月までの距離は,14,960±250 万kmと38.44±2.11万kmなので,その比率は,418.7〜389.2〜362.8の範囲で変化する。距離の組み合わせが均等な割合で一様分布するという(誤った)単純な考えのもとでは,距離比が半径比より大きな場合と小さな場合は2:1になるので,皆既日食の頻度:金環食の頻度は2:1くらいかとおもいきや,実際には,2:3くらいのようだ。黄道面と白道面は傾いているし。白道面も歳差運動しているのでまじめに計算しないと答えが出ないということだろう。


写真:石垣島で観測された部分日食(引用:朝日新聞より恵原弘太郎氏撮影





2020年6月20日土曜日

平沢進(1)

犬も歩けば棒にあたる。今日は平沢進(1954.4.1-)にあたった。Twitterでみた「賢者のプロペラ」が頭痛に効くというのがきっかけ。JASRACと喧嘩しているところもよろしい。オフィシャルウェブサイトには無料ダウンロードページもあった。4月1日生まれだと同学年になるのかな。さっそくyoutubeのhirasawasusumuもチャンネル登録してみる。

2020年6月19日金曜日

核電気共鳴(NER)

オーストラリアのニューサウスウェールズ大学のグループが,実験の失敗から量子コンピュータへの道のブレークスルーを開いたかもしれないという3ヶ月前の記事(2020.3.20)にぶつかったので,調べてみた。arxivの "Coherent electrical control of a single high-spin nucleus in silicon" だ。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
原子核スピンは高度にコヒーレントな量子オブジェクトである。大規模なアンサンブルにおいて,核磁気共鳴によってその制御と測定が行われ,化学,医学,材料科学,鉱業などで広く利用されている。また,原子核スピンは、量子情報処理の初期のアイデア[1]や実証[2]にも登場している。これらのアイデアをスケールアップするには,個々の原子核を制御する必要がある,つまり,原子核が一つの電子と結合したことを検出できるということだ[3, 4, 5]。

しかし,原子核との相互作用は振動する磁場によってもたらされる必要があるが,磁場を局所化したり遮断したりできないことから,多スピンナノスケール素子への組み込みは複雑になる。電場を用いた制御はこの問題を解決するだろうが,これまでの方法[6,7,8]では,電子と原子核の超微細相互作用をとおして電気信号を磁場に変換することに依存していたため,原子核スピンのコヒーレンスに重大な影響を与えていた。

ここでは,シリコンナノ電子素子内で生成された局所的な電場を用いて,単一アンチモン(スピン7/2)原子核のコヒーレント量子制御を実証した。この方法は、1961年に最初に提案されたアイデア[9]を利用したものであるが、これまで単一の原子核では実験的に実現されていなかった。我々の結果は,微視的な理論モデルによって支持されている。それは,原子核四重極相互作用の純粋な電気的変調が,格子歪みのもとで,コヒーレントな核スピン遷移をもたらすことを説明している。

その結果得られたスピン脱フェージング時間0.1秒は,電気的に駆動するために結合した電子スピンを必要とする方法で得られた結果を1桁以上回っている。これらの結果は,高スピンで四重極能率を持つ原子核が,完全に電気的な制御を用いて,カオスモデル,歪みセンサー,ハイブリッドスピン機械量子システムとして展開できることを示している。電気的に制御可能な原子核を量子ドット[10, 11]と統合することで,振動磁場を必要とせずに動作する,シリコン上でのスケーラブルな核・電子スピンベースの量子計算機への道が開けるかもしれない。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

arxivで見つかる Nuclear Electric Resonance には,日本のNTT−東北大−ERATOグループによる,"Electric-Field-Induced Nuclear Spin Resonance Mediated by Oscillating Electron Spin Domains in GaAs-Based Semiconductors" とか,"Spatial distribution of dynamically polarized nuclear spins in electron spin domains in the ν = 2/3 fractional quantum Hall state studied by nuclear electric resonance"とかが出てくる。ううむ,NERは自然言語処理分野では,Named Entity Recognitionのアクロニムなのか。

たんに,核四重極能率をつかったスピン制御というのであれば,ベータ崩壊の核整列における杉本−南園グループの手法とかわらないような気がするけれど,どこが本質的な違いなのだろうか。

2020年6月18日木曜日

XENON1T暗黒物質実験

イタリアの山中1400mの深さに世界最大級の地下素粒子研究施設グラン・サッソ国立研究所がある。そこに設置された超高純度低バックグラウンド液体キセノン測定器XENON1Tによる実験結果がarxivに報告(Observation of Excess Electronic Recoil Events in XENON1T)されており,IPMUからもプレスリリースが出ている。

本来は宇宙にある暗黒物質の測定を目的としているが,この報告では標準理論からずれた新しい物理学の探索に興味がある。つまり,暗黒物質の候補としてのアクシオンを考えた場合,宇宙論的な制約から暗黒物質候補としてのアクシオンはKeVオーダー以下でなければならない。一方この装置では,1〜100KeVのオーダーのアクシオン(太陽アクシオン)を観測することができるというわけだ。さっそくアブストラクトを訳してみた

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
XENON1T検出器で測定された低エネルギー電子反跳データを用いて,新しい物理学の探索を行った結果を報告する。0.65トン年の被ばくと1-30keVの間の76±2(stat)イベント/(トン×年×keV)という前代未聞の低バックグラウンド率により,太陽アクシオン,太陽ニュートリノの磁気モーメント,ボソニック暗黒物質の競合的探索が可能となった。

7 keV以下で観測される既知のバックグラウンドを超える過剰は,低エネルギーに向かって上昇し,2-3 keVの間で顕著になる。太陽アクシオンモデルは3.5σの有意性を持ち,電子・光子・原子核へのアクシオン結合については3次元の90%信頼度曲面が報告されている。この曲面はg_ae<3.7×10^-12, g_ae g_an^eff<4.6×10^-18, g_ae g_aγ<7.6×10^-22 GeV-1で定義された立方体に内接しており,g_ae=0またはg_ae g_aγ=g_ae ge_an^eff=0のいずれかを除く。

ニュートリノ磁気モーメント信号は3.2σでバックグラウンドよりも同様に有利であり,μ_ν∈(1.4,2.9)×10^-11 μ_B (90% C.L.) の信頼区間が報告されている。どちらの結果も恒星からくる制約とは緊張関係にある。

また、当初は考慮されていなかったトリチウムのβ崩壊も,キセノン中のトリチウム濃度が(6.2±2.0)×10^-25 mol/molに対応する3.2σの有意性で説明できる。このような微量な量は、現在の生産・還元メカニズムの知見では確認も排除もできない。制約のないトリチウム成分をフィッティングに含めると,太陽アキシオン仮説とニュートリノ磁気モーメント仮説の有意性はそれぞれ2.1σと0.9σに減少する。この解析によれば,疑スカラーとベクトル型のボソニック暗黒物質について,1〜210keV/c^2の間のほとんどの質量について,これまでで最も制限的な直接の制約を与える。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

論文のアペンディックスにはβ線スペクトルのモデリングとして2ページを越えて懐かしい式が並んでいた。鉛やクリプトンからのバックグラウンドの計算で必要らしい。べーレンズ・ビューリングのβ線スペクトルの式や,スペクトル補正関数,クーロン補正の係数,スクリーニング補正の効果などおなじみの表式のオンパレードである。低エネルギーにおける反跳電子の測定が肝なので,このあたりを丁寧に押さえておく必要があるのだと思われる。






2020年6月17日水曜日

稗田環濠集落

稗田阿礼の出身地ということで,稗田環濠集落にある賣太神社の祭神は稗田阿礼命(ひえだのあれのみこと)だった。天宇受賣命(あめのうずめのみこと)と猿田彦神(さるたひこのかみ)も祭神に名を連ねている。

神道の神の命名規則によると,「(1)○○ノ(2)○○ノ(3)○○」では,(1)が神の属性,(2)が神の名前,(3)が神号(尊称)である。むむむ,(3)には神−命−大神−権現−明神などがあるようだがいまひとつ区別がかわからない。そもそもサルタヒコも古事記では猿田毘古神・猿田毘古大神・猿田毘古之男神であり,日本書紀では猿田彦命となっているということなのでいったいなんなのか。

えーっ,猿田彦と天宇受賣は夫婦だったのか。猿田彦が手塚治虫の火の鳥にでてきたところまではなんとなく知っていたけれど。また「アメノウズメ」は古事記では天宇受賣命,日本書紀では天細女命となっている。賣太神社は稗田阿礼なので古事記方式でよいのだろう。

P. S. 稗田環濠集落の水路には亀がたくさん泳いでいた。猿沢池を越えるインパクトである。


写真:大和郡山市の稗田環濠集落にある賣太神社(2020.6.16撮影)

2020年6月16日火曜日

銀河系の知的文明

36の知的文明が銀河系内で交信?、英研究チームが算出」などのセンセーショナルなタイトルのニュースが飛んでいたので,またぞろドレイク方程式か何かかと思えば,「宇宙生物学コペルニクス原理」というものを編み出したらしいので,arxivで探してみた。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
我々は,生命の探索に関する宇宙的な視点を提示し,最新の天体物理学的情報を用いて,我々の銀河系に交信している地球外知的文明(CETI)が存在する可能性を調べている。我々の計算には,銀河系の星形成史,金属元素分布,ハビタブルゾーンに地球型惑星が存在する可能性を,我々が宇宙生物学的・コペルニクス的弱・強条件と呼ぶ特定の仮定の下で計算している。これらの仮定は,知的で交信能力のある生命が存在することが知られている唯一の状況,つまり我々自身の惑星に基づいている。このタイプの生命は,金属元素が豊富な環境で発達し,そのために約50億年の時間を要した。我々は,いくつかの異なったシナリオに基づいて可能なCETIの数を研究している。一つは「弱い宇宙生物学的コペルニクスの原理」であり,惑星が知的生命体を形成するのは50億年後のことだが,それ以前ではない。もう一つは強い条件であり,地球のように45~55億年の間に生命が形成されなければならないというものだ。強い条件(厳密な仮定)の下では,銀河系内には少なくとも36+175-32の文明が存在するはずだ。これは下限値であり,交信可能な文明の平均寿命は100年であるという(現在の我々の状況に基づく)仮定を置いている。もしCETIが銀河系全体に一様に広がっているとすれば,最も近いものはせいぜい17000+33600-10000光年の距離にあり、低質量の赤色矮星を周回している可能性が高く,我々が予測可能な将来の検出能力をはるかに超えていることを意味する。さらに,この生命をホストしている星が太陽型星である可能性は非常に低く,ほとんどが赤色矮星でなければならないことから,長い時間スケールで生命をホストするには十分に安定ではないと考えられる。我々はさらに他のシナリオを検討し,我々の仮定条件を変えることで,銀河系内に存在可能性なCETIの数を調べた。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

むむむ,銀河系内の交信可能な文明は結構存在するにしてもほとんどがあまり長くに渡って安定でない赤色矮星(M-Dwarf)の回りの惑星にあり,ほとんど観測困難で,どうなんでしょうということだ。あ,いろいろ書いているけれど,かなり精密化された新しいドレイク方程式なのでした。うーむ,うまくいけば,700年ぐらいがんばると1つ交信可能な文明が見つかるし,7000光年以内に知的生命体が見つからないようならば,交信可能な文明の持続時間は2000年以下であり,我々もまたそうである可能性が高いらしい。むむむ。

2020年6月15日月曜日

ジーン・シモンズ

ロックグルーブKISSジーン・シモンズの番組が放映されていた。もう70歳なのに,20kgの衣裳をつけて口から火を噴いていた。舌が長いのだ。たいへんだ。KISSのイメージの特徴的な顔の隈取りデザインはジーン・シモンズの顔のものだった。

KISSは1973-74にブレイクしているが,そのころはもう洋楽ポップスはあまり聴かなくなっていた。そもそもあの手のハードロックはちょっと苦手だったし。ジーン・シモンズはユダヤ人であり,後にニューヨークに移住した母親がナチスの強制収容所の生き残りであった。

2020年6月14日日曜日

残された人々

アレグザンダー・ケイの児童文学「The Incredible Tide」が「残された人々」として邦訳されているが,これが宮崎駿の「未来少年コナン」の原作となった。NHKでまとめて放送しているのをたまたまみたが,なんと,ほとんど天空の城ラピュタのイメージやモチーフでちりばめられていた。そうだったのね。おもしろそうなのでとりあえず録画予約しておいた。

なお,インターネット上には The Incredible Tideのテキストもころがっているような雰囲気であった。この原作のほうもちょっと気になるところではある。

2020年6月13日土曜日

これでわかった! 世界のいま

NHKの日曜夕方の番組「これでわかった!世界のいま」は結構たのしみでみていたけれど,6月7日の放送で大きくつまづいた。以前から韓国や中国を取り上げる際に顕著だった(これらにも見るに堪えないものがしばしば登場していた)。NHKの国際部や政治部の偏向がとても気になる番組だったが,ここにいたって,人権センスがゼロであったことを露呈してしまった。国際部といい政治部といいひどいことになっているものだ。

番組の構成は,例の池上彰の週間子どもニュースのフレーバーを引き継いでおり,レギュラー出演者に坂下千里子を配置しつつ,上から目線で国際部や政治部のスタッフが「子ども」に教えを垂れるという構造になっていた。そこに陥穽があったわけだ。パックンやサヘル・ローズなども準レギュラーになっておりうまく構成すればとてもよい番組になりうる。いかんせん,今のNHKのニュース系番組全体が(社会部発信の一部を除いて),政府よりにねじ曲がっているために,こんなことになってしまったのだろうと思う。

「なにも知らない人々を啓蒙するためにわかりやすくデフォルメする」だとか「対立する双方に対等な言い分があるので是々非々とするのが中立性である」だとかのジャーナリズムに対する誤った観念に囚われすぎているのだろう。

2020年6月12日金曜日

岡山更生館事件

岡山更生館事件が話題になっていたので,Wikipediaをみたらテレビの2時間ドラマのプロットのようにドラマチックな記述だった。毎日新聞の大森実さんは著名なジャーナリストだが,Wikipediaのこの記事の主著者の方もちょっとなかなかな方であった。ひどい事件には違いないと思うが,どこまでどうなのかはよくわからない

例の小池百合子の件で,清水有高と安富歩が語っていたように,「嘘」というキーワードより「ハッタリ」の方がふさわしいのかもしれず,安倍政権のもとで電通が暗躍し,大阪維新のもとに吉本が妄動しているのも,「利益誘導」という経済原理に加えて,「ハッタリ」という情報原理(広告原理)が貫徹しているような気がする。そんなことは,半世紀も前に筒井康隆をはじめとする日本SF作家陣が擬似イベントSFとしてそのエッセンスを取り出していたような気がするけれど。

岡山更生館事件は悲劇で不正義ではあるけれど,ちょっとだけひっかかるところもある。小池百合子問題も同様。ただ,法的なシステムをぐずぐずにしてしまいかねない不誠実や不正義の横行は,到底「ハッタリ」で済ませることができないのだけれど。


2020年6月11日木曜日

ミューオンの異常磁気モーメント(1)

arXiv:2006.04822v1で,KEKやFermilabなどのグループが,ミューオンの異常磁気能率の最近の理論的計算のレビューを行っている。標準模型のテストとして注目されているのだ。そのアブストラクトを訳してみた。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
ミュオンの異常磁気モーメントの標準模型計算の現状をレビューする。
これは微細構造定数αの摂動展開で行われ,純粋なQEDと電弱相互作用とハドロン相互作用の寄与に分解できる。

純粋なQEDの寄与が最も大きくO(α^5)まで計算された。その数値的不確かさは無視できるほど小さい。電弱相互作用の寄与は,(m_μ/M_W)2の因子分だけ抑えられ,有効数字7桁目のレベルでしか現れない。計算は2ループまで評価されておりその誤差は1%以下である。

ハドロン相互作用の寄与は最も計算が難しく,理論的な不確実性のほとんどはここからくる。主なハドロン寄与はハドロンの真空偏極によるO(α^2)の項から始まる。また,O(α^3)では光-光散乱におけるハドロンの寄与が現れる。

この観測値に特徴的な低いエネルギースケールでは、ハドロン相互作用の寄与は非摂動的な方法,すなわち分散関係と格子QCDのアプローチで計算されなければならない。

このレビューのほとんどの部分は,理論計算精度改善のためのこれら2つの方法,すなわちデータ駆動型の分散的アプローチと第一原理的な格子QCDアプローチの詳細な説明に費やされている。

最終的な理論計算結果は,a_SM = 116 591 810(43) × 10^-11 μ である。この値はブルックヘブンの実験での測定値よりも3.7σ小さい。この実験的不確かさは,現在フェルミ加速器研究所で行われている新しい実験と,将来のJ-PARC実験によって,間もなく1/4にまで低減される予定である。

このことと,近い将来に理論的な不確かさがさらに低減される見込みがある(この論文で言及)ことから,この量は新しい物理学の証拠を探すための最も有望な場所の一つとなっている。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -