2022年11月14日月曜日

Intel Fortran

量子物理学の授業は,前期の復習モードが終わりつつある。1次元の有限井戸型ポテンシャル問題の解となるエネルギー固有値と固有関数を求めるというものだった。とりあえず,普通の教科書にあるような,$y=-\frac{x}{\tan x}$と,$x^2+y^2=r^2$のグラフを描いて交点からエネルギー固有値を求めようというお話で終るわけだ。

ところで,現代的な量子力学の教科書ではどうなっているのだろうか。サクライの教科書では,井戸型ポテンシャルは,付録のシュレーディンガー方程式の解の例のところで,結果だけがほんの1pにまとめられていた。堀田さんの教科書では,第11章の粒子の量子的挙動の演習問題にチョロッと顔を出しているだけだった。まあそういうことだ。

気分を変えて1次元ポテンシャルの一般的な数値解法がないかと探してみると,インテルのフォートランを使った解説ページが見つかった。インテルのフォートランは有償だと思っていたけれど,どうやら無償で使えるし,macOSにもかろうじて対応しているようだ。そこで参考サイトにしたがって,早速インストールしてみた。

(1) Intel OneAPI Toolkitsで,Intel oneAPI Base Toolkit とIntel oneAPI HPC Toolkit の2つのパッケージをダウンロードする。その際にユーザ登録が必要となるが無償である。
(2) それぞれのToolkitを展開する(ネットワークインストール版を使った)。
(3) 下記の場所にある環境設定スクリプトに誘導されるのでこれを実行する。
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-base-hpc-macos/top/before-you-begin.html?cid=oth&campid=iags_install&source=installer?cid=oth&campid=iags_install&source=installer

. /opt/intel/oneapi/setvars.sh

 (4) 簡単なプログラム a.f を作って実行してみた。

      implicit complex*16(a-h,o-z)

      write(*,*) "input a,b,c"

      read(*,*) a,b,c

      x1=(-b+sqrt(b**2-4*a*c))/2

      x2=(-b-sqrt(b**2-4*a*c))/2

      write(*,*) " x1= ",x1," x2= ",x2

      end


$ ifort a.f

$ ./a.out

 input a,b,c

$  1,1,1

$   x1=  (-0.500000000000000,0.866025403784439)  x2= 

 (-0.500000000000000,-0.866025403784439)


できた。


SIN基底とQUADPACKによる1次元時間依存しないシュレーディンガー方程式のページの例題も試してみる。調和振動子のエネルギー準位が再現できた。なお,行列の対角化ライブラリがはいっているインテル・マス・カーネルライブラリのオプション -mkl を -qmkl にせよとの警告がでていた。


$ ifort -qmkl quadpack.f90 main.f90

$ ls

a.out main.f90 quadpack.f90

$ ./a.out

           1  0.499999999999997     

           2   1.50000000000004     

           3   2.50000000000008     

           4   3.50000000000073     

           5   4.50000000003176     

           6   5.50000000018886     

           7   6.50000000502383     

           8   7.50000002123218     

           9   8.50000037227348     

          10   9.50000121353051   


2022年11月13日日曜日

ホール・アース・カタログ

NHKの映像の世紀で先日放映された「世界を変えた“愚か者”フラーとジョブズ」がすごく面白かった。

フラーはアメリカの思想家,建築家であるバックミンスター・フラー(1895-1983)。宇宙船地球号という概念の提唱者であり,ジオデシック・ドームを考案した。1985年に見つかった炭素の同素体のフラーレン(buckminsterfullerene,buckyballs)はフラーにちなんで名付けられている。一方,ジョブズは(Apple)のスティーブ・ジョブズ(1955-2011)である。

この二人の愚か者が,ホール・アース・カタログを経由して強く結ばれていたというのが放送のテーマだった。2005年6月12日にスタンフォード大学の卒業式に招かれたジョブズのスピーチは,簡単な挨拶の後にMy story is about death から始まるが,とても印象深いものだった。その結びの言葉である,Stay Hungry. Stay Foolish. は彼が大きな影響を受けたホール・アース・カタログの最終号からきている。

ホール・アース・カタログは,スチュアート・ブラント(1938-)が創刊したヒッピー文化やハッカー文化などのカウンターカルチャーの雑誌だった。そのブラントが,バックミンスター・フラーの多大な影響を受けていた。カタログの最初には,フラーの4冊の本が取り上げられ,The insights of Buckminster Fuller are what initiated this catalog.とあった。(スチュアート・ブラントが後に原発推進の立場になっていたのはまた別の話,松岡正剛の千夜千冊を参照

ホール・アース・カタログが1974年に終刊を迎えたとき,余剰金の2万ドルをどうするかが議論となり,それは結局,平和活動家のフレッド・ムーア(1941-1997)に託された。そのフレッド・ムーアは,1975年3月にメンロパークで立ち上げられたホームブリュー・コンピュータ・クラブ(1975-1986)の創設に加わる。ジョブズはアップルの共同創業者となるスティーブ・ウォズニアック(1950-)とともにこのクラブに参加していたのだった。

2011年にジョブズは,MacやiPhoneやiPadを残し膵臓ガンで亡くなった。彼が生前に計画していた,ノーマン・フォスター(1935-)のデザインによるアップル・パーク本社の特徴的なドーナツ型の建物は,2017年にできあがった。ノーマン・フォスターはバックミンスター・フラーの弟子でもあった。


写真:アップルパークのアップル本社(Wikipediaから引用)

2022年11月12日土曜日

一谷嫩軍記

久々の国立文楽劇場で,第二部の一谷嫩軍記を観劇する。

弥陀六内の段(睦太夫・團吾)から,脇ヶ浜宝引の段(織太夫・燕三),熊谷桜の段(希太夫・清丈)まで気持ちよく寝てしまった。織太夫は病休の咲太夫の代演だったようで,ここはちゃり場だとはいうものの,声が大きいだけで粗っぽくあまり聞く気にはならなかった。家人によれば希太夫が良かったということだが,これは残念ながら聞き逃してしまった。

熊谷陣屋の段の前半が竹本錣太夫と竹澤宗助。モチモチした語り癖はあるとはいうものの,うまく語り分けていて,熊谷次郎直実と妻相模と敦盛の母の藤の局のややこしい話が進んでゆく。後半の切は豊竹呂太夫と鶴澤清介。語り始めの三味線の前奏部分は,似たようなメロディだけれど,宗助に比べると清介の音の方が一段と澄んでいる。バチ捌きはともにするどい。呂太夫は相変わらず声が出ていない。瞬間的なバーストがあったものの,なんだか残念だ。

熊谷陣屋の段は何度か見ているはずだけれど,いまだに物語が飲み込めていなかった。義経が出した桜の前の制札にある「一枝を伐らば一指を剪るべし」の後半の「一指」が「一子」にかかっていて,敦盛を討取ったと見せかけて自分(熊谷直実)の子どもの小次郎の首を差し出すことにせよと解釈するところまではよい。そこに絡む藤の局と相模の関係とか,弥陀六の位置づけがわからなかった。今回,肝腎のその説明部分で寝ていたのだけれど,最終盤で義経を挟んで弥陀六,藤の局,相模,熊谷次郎直実の5人が対称的に並んで見得を切っていたのでなんとなく雰囲気はわかった。

今日は珍しく花道が設置されていたが,第三部に弁慶の勧進帳があるからだった。


図:一谷嫩軍記の熊谷次郎直実(Wikipediaから引用)

2022年11月11日金曜日

最小交換硬貨枚数(2)

最小交換硬貨枚数(1)からの続き

前回の結果からいくつかの疑問がでてきた。最小交換硬貨枚数の平均値が最小となる中間硬貨は5円でよいのだろうか。5の倍数以外だと,ドルでは25セント,ユーロでは,0.02ユーロ,0.2ユーロ,2ユーロなどの硬貨がある。中国(元,角)や韓国(ウォン)は日本と同じで5の倍数だけだ。

そこで,2円〜9円までの中間硬貨を設定したときの最小交換硬貨枚数の平均値を求めてみることにする。ついでに,硬貨種類別の交換枚数の合計や情報エントロピーも合わせて計算する。なお,1円から1000円までの一円刻みの商品の支払いを硬貨のみで行い,手持ち硬貨数やおつりの硬貨数は冗長性をはぶいた最小の値の範囲で考える。

function foop(m,y)
    nmin = 100
    mm = div(9,m)
    c=[1,m,10,10*m,100,100*m]
    k=[0,0,0,0,0,0]
    t=[0,0,0,0,0,0]
    for k[1] in -(m-1):(m-1)
    for k[2] in -mm:mm
        for k[3] in -(m-1):(m-1)
        for k[4] in -mm:mm
            for k[5] in -(m-1):(m-1)
            for k[6] in 0:mm+1
                z = 0
                n = 0
                for j in 1:6
                    n = n + abs(k[j])
                    z = z + c[j]*k[j]
                end
                if z==y
#                   println(z," : ",k," : ",n)
                    if n < nmin
                        nmin = n
                        for l in 1:6
                            t[l] = abs(k[l])
                        end
                    end
                end
            end
            end
        end
        end
    end
    end
    return nmin,t
end

function main(m)
  p=[0.,0.,0.,0.,0.,0.]
  s=[0,0,0,0,0,0]
  t=[0,0,0,0,0,0]
  a=zeros(Int,1000)
  sum=0
  for i in 1:1000
    (n,t) = foop(m,i)
    a[i]=n
    sum = sum + n
    for j in 1:6
        s[j] = s[j] + t[j]
    end
#    println(i," ",n)
  end
  inf = 0.0
  for j in 1:6
     p[j] = s[j]/sum
     inf = inf -p[j]*log2(p[j])
  end
  @printf("%.3f : %04d %04d %04d %04d %04d %04d -> %.3f\n",
          inf,s[1],s[2],s[3],s[4],s[5],s[6],sum/1000)
#    println(a)
  plot(a)
end


for i in 2:9
    print(i," ")
    main(i)
end

2 2.301 : 0500 1025 0445 1000 0455 2275 -> 5.700
3 2.473 : 0753 0747 0601 0758 0547 1611 -> 5.017
4 2.552 : 0700 0738 0564 0728 0826 1118 -> 4.674
5 2.487 : 1254 0446 1020 0450 1000 0956 -> 5.126
6 2.466 : 0984 0500 0814 0500 1530 0690 -> 5.018
7 2.491 : 0900 0600 0793 0600 1518 0636 -> 5.047
8 2.458 : 1358 0614 1065 0640 1640 0545 -> 5.862
9 2.314 : 2054 0446 1644 0442 1650 0510 -> 6.746

等比数列の中間値である√10や根拠はないけれどネピア数e 近辺あたりの3円がよいのかと思いきや,4円にすると平均交換硬貨枚数が 4.67枚となって,5円の5.13枚よりも小さくなるのだった。ただし,情報エントロピーの最小値は2円の 2.30なのである。どういう意味かまではわかっていない。


図:1円から1000円までの交換硬貨枚数(中間硬貨は5円)

2022年11月10日木曜日

最小交換硬貨枚数(1)


2025年度の大学入学共通テストに新規参入する「情報I」の試作問題が,日経の朝刊に掲載されていた。

退職前には,監督に当たるのはこれ以上体力的精神的な限界をはるかにこえてもう絶対無理と思っていた大学入学センター試験だ。これが,大学入学共通テストと看板を替えて,教科「情報」を新しい試験科目として追加採用してしまった。情報教育関係の大学や高校の教員の皆さんはお喜びのようであるが,なんだかなぁの案件である。

60分で全問必答の大問が4問出題されている。掲載されていた第3問がプログラミングの問題だったので,さっそくチャレンジしてみた。その問題のテーマは最小交換硬貨枚数だ。最近は,PayPayで支払うことが増えてきたが,財布の硬貨数の制御は老人の認知症防止のために最適である。おつりが増えすぎないように,少し硬貨を加えて切りのよいおつりにするあれね

例えば,46円の支払いだと,10円×4 + 5円×1 + 1円×1 でもよいし,50円×1 + 1円×1 - 5円×1 もある。ここで,マイナスはお店から戻ってくる硬貨を表わしている。前者の交換硬貨枚数は6枚であり,後者では3枚となり,後者の方が交換硬貨枚数は少ない。

問題の誘導部分を読む前に,さっそくプログラムを作ってみたが,肝腎の多めに払っておつりが返ってくるところに不備がありまくりだった。

function pay(m,y)
    n = 0
    c=[500,100,50,10,5,1]
    d=[y]
    for i in 1:6
        while y-c[i] >= 0
            y = y - c[i]
            n = n + 1
            push!(d,c[i])
        end
    end
    push!(d,-(m+n))
    println(d)
    return m+n
end

function change(y)
    m = 0
    n = 0
    c=[1,5,10,50,100,500]
    d=[y]
    pay(0,y)
    for i in 1:5
        while mod(y,c[i+1])!=0
            y = y + c[i]
            n = n + 1
            push!(d,c[i])
        end
        m1 = m + n
        if m1!=m
            push!(d,-m1)
            print(d)
            pay(m1,y)
            n=0
            deleteat!(d,length(d))
        end
        m = m1
    end
end

change(46)
[46, 10, 10, 10, 10, 5, 1, -6]
[46, 1, 1, 1, 1, -4][50, 50, -5]
[46, 1, 1, 1, 1, 50, -5][100, 100, -6]
[46, 1, 1, 1, 1, 50, 100, 100, 100, 100, -9][500, 500, -10]

そこで,1000円以下なら数もしれているということで,方針を変えて総当たりで確認するアルゴリズムに変更した。全くスマートではないのである。この中から最小値を探すのは目の子でできる。出力される配列 [ ] の中身は,交換される硬貨枚数が並んでいて,マイナスがついたものは店から客へのバック分を表わしている。最後の出力値が交換硬貨枚数だ。

function foop(y)
    c=[1,5,10,50,100,500]
    k=[0,0,0,0,0,0]
    for k[1] in -4:4
    for k[2] in -1:1
        for k[3] in -4:4
        for k[4] in -1:1
            for k[5] in -4:4
            for k[6] in 0:2
                z = 0
                n = 0
                for j in 1:6
                    n = n + abs(k[j])
                    z = z + c[j]*k[j]
                end
                if z==y
                    println(z," : ",k," : ",n)
                end
            end
            end
        end
        end
    end
    end
end

foop(46)
46 : [-4, 0, 0, -1, -4, 1] : 10
46 : [-4, 0, 0, -1, 1, 0] : 6
46 : [-4, 0, 0, 1, 0, 0] : 5
46 : [1, -1, 0, -1, -4, 1] : 8
46 : [1, -1, 0, -1, 1, 0] : 4
46 : [1, -1, 0, 1, 0, 0] : 3
46 : [1, 1, -1, -1, -4, 1] : 9
46 : [1, 1, -1, -1, 1, 0] : 5
46 : [1, 1, -1, 1, 0, 0] : 4
46 : [1, 1, 4, 0, 0, 0] : 6

ここまでくるのに2時間くらいかかったので,とてもじゃないけれど自分の場合60分で大問4問も解けそうにはない。ループ変数を配列にするなんていうのは初めての経験だった。


写真:日本の通常硬貨(造幣局から引用)


2022年11月9日水曜日

ブルーダイアリー

久々に家人の所用で梅田まで出る。冬に入り来年の手帳を買う季節がやってきた。

手帳を使い始めたのは,中学校のころだ。父が,北國銀行の古い手帳の残部をくれることがあって,なんとなく持ち歩いていた。手帳というのは,自分が必要とする知識をコンパクトに収めて携帯するものだと認識していた。田舎の中学生に行事や業務の予定はない。

理科の図鑑を沢山読んでいた小学校低学年のころ,宇宙の重要なデータを小さな紙に書きまとめ持ち歩いていたことがある。最も重要だと考えたのが光の速度で,1秒間に30万km,2秒で60万km など,かけ算のテーブルよろしく表にしていた。他に何を記載していたかよく憶えていないが,太陽や月や惑星のデータだったかもしれない。まあ,こども理科年表ですね。

理科で月を扱う単元の最初の時間(小学校2年),「月について知っていることはありますか」との先生の発問に,ハイハイハイと大きな声いっぱいに手を上げて無事あてられたものの,「月は地球の衛星で・・・」と頭でっかちの思いばかり先走り,その後の言葉が続かなかった。

高校時代,米島君に北國銀行の手帳を見せて自慢していたら,彼は,タナベ経営ブルーダイアリーをどこからか探し出してきた。確かにそちらの方がスマートで機能的だった。自分でこのブルーダイアリー・ジュニアを毎年買うようになったのは大学に入ってからだろうか。それ以来50年は使っていることになる。手元の引き出しには1990年からの30年分が置いてある。

ブルーダイアリーはその後,行事予定記録帳やパスワードメモ帳として活用されるのだが,定年前後から書くべき予定もなくなってしまい,アイディア計算ノートに変貌してしまった。それでも毎年購入していないと落ち着かない。

阪急百貨店のこじゃれた文房具コーナーで探すものの,高橋書店の手帳や能率手帳しか置いていない。しかたなく,紀伊国屋書店までひとっ走りしたのだが,ここも高橋書店やモレスキンやシステム手帳に占領されている。店員さんに尋ねて探し回った結果,ようやく隅の方に埋もれていたブルーダイアリー・ジュニアが発掘された。

ネットで検索してみると,タナベコンサルティングのブルーダイアリーは店頭販売から撤退してネット販売だけになっていた。ようやく買い求めることができた2023年のブルーダイアリーは外装がシックな紺の網目に変更されていた。手書きの手帳はいつまで続くことだろう。


写真:外装が濃青から紺に変更されたブルーダイアリー・ジュニア

2022年11月8日火曜日

世阿弥の佐渡状

NARASIAからの続き

なら歴史芸術文化村の文化財修復・展示棟地下では,「奈良県指定の文化財」という特集展示があった。奈良県の国宝・重要文化財の数は1311件で,東京都(2729件),京都府(2144件)についで,全国3位。なお,彫刻と建物では全国1位だ。奈良県の国宝・重要文化財のほぼ半分の614件は奈良市にあり,次は斑鳩町の220件,3番目が天理市110件となっている。

今回の特集は,奈良県指定文化財の展示であり,最後のコーナーに世阿弥(1363-1443)が配流されていた佐渡から金春大夫に宛てて送った「宝山寺観世世阿弥能楽伝書 佐渡状」が展示されていた。生駒市の寶山寺の所蔵品。

本文末に「不思議ノゐ中ニテ候間、料紙ナンドダニモ候ワデ、聊爾ナルヤウニカ思シ召サレ候ラン。(信じられぬほどの田舎の島で,この通りろくな紙もありはせぬゆえ,無礼なと思われるかもしれません)」とあるように,薄く粗末な紙にしたためられていた。

この手紙は世阿弥の絶筆ともいわれている足利義満(1358-1408)には重用されていたはずの世阿弥がなぜ佐渡に流されてしまったのか。足利義持(1395-1423)のときに冷遇が始まり,足利義教(1394-1441)の時代にはついに都を追われてしまう。世阿弥の甥の音阿弥(1398-1468)との権力闘争に敗れてしまったか。その義教も最後は暗殺されている。

世阿弥は大和結崎座の出身。奈良県川西町にある近鉄橿原線の結崎駅は,毎朝の散歩コースの南西限界に位置する。このあたりが観世能の発祥の地だ。なんとか,大河ドラマで取り上げてほしいリストに追加されないか。もう,戦国時代と徳川幕府と明治維新はうんざりなんです。


写真:世阿弥の佐渡状(生駒市デジタルミュージアムから引用)

[2]補厳禅寺納帳(奈良県田原本町)
[4]世阿弥北川忠彦

2022年11月7日月曜日

NARASIA

秋晴れの立冬前日の午後,天理市のなら歴史芸術文化村に立ち寄った。

いつものように,ひととおり,文化財修復・展示棟をみてまわり,1Fの資料・パンフレットコーナをみていると,EURO-NARASIA Q 22号というしっかり製本された雑誌があった。手に取ると,奈良県立大学ユーラシア研究センターが発刊している。

大学の刊行物にしてはすごくお金がかかっていそうでびっくりした。奈良県立大学のユーラシア研究センターは,「広くユーラシアと関わる奈良の文化資源に関する調査研究」を行いその成果を県民はじめ内外に発信することが目的なので,奈良県としては広報の一環として予算をつぎこんでいるのかもしれない。

NARASIAのバックナンバーは,第14号から21号までがpdf公開されている。最新号は,奈良県施設に置いて無料配布している。年に2-3回の発行なのでなかなか太っ腹なのだ。第22号は,上質紙64ページでカラーページも多く,テーマが安如宝・和と洋・タジキスタン・ゾロアスター教・モダニズム・妖怪博士・雲土器と読みごたえもありそうだ。


写真:EURO-NARASIA Q 第22号の書影

P. S. 1 現在の奈良県立大学の理事長は,天理市長並河健の師匠の北岡伸一だった。
P. S. 2 NARASIAは奈良NARAとアジアASIAを繋げた造語であり,平城遷都1300年のころから使われているようだ。


2022年11月6日日曜日

質量とは何か

放送大学の生涯学習支援番組「科学からの招待状」の第4回は「質量とは何か この宇宙に存在する物質の根本的性質とその起源を考える」というものだった。

たまたまチャンネルを回すと,放送大学の松井哲男さん(1953-)の司会で,矢崎紘一先生(1938-)が話されていた。久しぶりにお顔を拝見したが,ずいぶんとお年を召されてしまった。タイトルがちょっと微妙なのだが,宇宙の物質の質量を担っているのは原子核だということでこういうテーマ設定にしたたのだろう。

この回に登場するのは,矢崎さんとゴードン・ベイム(1935-)と初田哲男さん(1958-)だ。矢崎先生の父上も仁科芳雄のところで,サイクロトロンや原子核の研究をしていたらしい。矢崎さん(15歳上),松井さん(1学年上),初田さん(5学年下)は,原子核理論の近い分野の研究者だった。

45年ほど前,矢崎さんは,東大の有馬研の助教授で,鈴木俊夫さん(1951-)らと炭素12のM1電子散乱の磁気形状因子に対するコア偏極の効果を共同研究していた。彼らの結果と,我々の追試計算の結果が微妙にズレている。そこで,もしかして彼らの式の導出方法が間違っているのではと考え,こちらが想定した彼らの方法に対応するCFPの計算式を送った。

矢崎さんはスラスラとこちらの計算式の解釈の問題を明らかにして,矛盾はあっという間に解消された。我々の計算が間違っていたわけではないが,久々にCFPの複雑な計算をしましたというコメントが大坪先生経由で寄せられた。

そういえば,森田先生が京都での研究会の後に,矢崎さんらを含む若手を招いて飲みにいったこともあった。有馬研はその後,矢崎さん,大塚さんへと引きつがれ,原子核殻模型計算の最先端を走っていく。

2022年11月5日土曜日

戦争と人間(3)

戦争と人間(2)からの続き

山本薩夫監督(1910-1983,両親は小松市出身,山本三兄弟は甥)の「戦争と人間」三部作は,なんとなく消化不良のノモンハン事件までで終ってしまった。なお,ノモンハン事件は,中公文庫「失敗の本質−日本軍の組織的研究」の「一章 失敗の事例研究」の6件のうち,真っ先に取り上げられてた。

よく考えると,原作は五味川純平(1916-1995)の小説なので続きがあるかもしれないと調べてみた。三一新書,後に光文社文庫から出版されていた。Kindle版は今もあるのだけれど,文庫版のほうは古書で1冊数万円の値がついているものもある。

古書店など探していると,メルカリに「戦争と人間(三一新書全18冊揃い)」が3000円で出品されていたので,早速注文してみた。12巻の劫火の狩人第四部までが映画の三部作に対応しているようで,その後の話は13巻から18巻まで続くことになる。

五味川純平といえば「人間の條件」なのだが,こちらの方はテレビの昼のメロドラマ帯で断片的にみたような気がするけれど,軍隊の横暴さ残酷さは同じように描かれていたとしても,違う作品だったのかもしれない。

P. S. 仲代達矢ではなく加藤剛のイメージだったが,「テレビドラマ版の人間の條件」確かにありました。昼帯ではなかったけれど,1962年10月から1963年4月までの放映だ(小学校3年生のころか)。

2022年11月4日金曜日

弾道ミサイルの軌道(4)

弾道ミサイルの軌道(3)ロフテッド軌道(3)からの続き

11月3日文化の日,午前7時50分に例のけたたましいJ-アラートが新潟県・山形県・宮城県に発出された。7時40分にミサイルが発射されたということだったが,続報では,午前7時48分に日本上空を通過したとなり,その後ミサイルは日本海上空で消失したなどと情報は二転三転する。

防衛省が11月3日の落ち着いた段階で発表したものは次の通り。
北朝鮮は本日7時台から8時台にかけ,ICBM級の可能性があるものも含め,少なくとも3発の弾道ミサイルを,東方向に向けて発射しました。詳細については現在分析中ですが,落下したのはいずれも我が国の排他的経済水域(EEZ)外であり,飛翔距離等については以下の通りと推定しています。
7時39分頃,北朝鮮西岸付近から発射し,最高高度約2000 km程度で,約750 km程度飛翔し,朝鮮半島東側の日本海に落下。当該ミサイルはICBM級の可能性があります。
② 8時39分頃,北朝鮮内陸部から発射し,最高高度約50 km程度で,約350 km程度飛翔し,朝鮮半島東岸付近に落下。
③ 8時48分頃,北朝鮮内陸部から発射し,最高高度約50 km程度で,約350 km程度飛翔し,朝鮮半島東岸付近に落下。
なお,日本列島を超えて飛翔する可能性があると探知したものについては,その後,当該情報を確認したところ,探知したものは日本列島を超えず,日本海上空にてレーダーから消失したことが確認されました。
航空自衛隊が設置している警戒管制レーダーのJ/FPS-5(ガメラレーダー),J/FPS-7は弾道ミサイルを探知することができるはずだ。
実際に弾道ミサイルの飛来を探知した場合は,まず航空総隊/BMD統合任務部隊にデータが送信され,防衛省を経て内閣総理大臣および各省庁にデータが送られる。総務省は,全国瞬時警報システム(J-アラート)を通じてマスメディアや地方公共団体に警報を伝達する。国民には,報道や防災無線を通じて屋内退避などの自己防衛が指示される(Wikipedia J/FPS-5から引用)。
ということならば,問題は,Jアラート側というより,航空自衛隊の警戒管制レーダーの精度と分析能力にあることになる(あるいは発出の政治的判断を含めて)。こんな調子で,防衛費を今後5年間で48兆円に倍増しても大丈夫なのかな。

なお,失敗ともいわれているICBM級ミサイルの軌道は高高度のロフテッド軌道に準ずるものだ。前回の4600kmとんだものの高度は1000kmだったので,失敗としてもその2倍に達している。先に作ったコードを用いて,加速パラメタを共通(0.0446 km/s^2)にしておけば,投射角度と燃焼時間を調整することで,成功したロフテッド軌道(最大高度6250 km,到達距離1090 km,到達時間 4000 秒)と,今回の(失敗かもしれない)ロフテッド軌道(最大高度 1980 km,到達距離 760 km,到達時間 不明)をそれぞれ再現することはできそうだった。

このとき,11月3日午前7時39分に発射された弾道ミサイルの飛行時間は27分前後=1650秒となるので,落下時間は午前8時6分ごろである。多段式だとすれば,今のモデルではうまく記述できていないのだが,第1段の落下時刻はこれより早かったと思われる。

(* g = 0.0098; R = 6350; τ = 86.2; p = 0.75; a = 0.0446; 
s = 86 Degree; T = 4000; *)

g = 0.0098; R = 6350; τ = 77; p = 0.65; 
a = 0.0446; s = 84 Degree; T = 1650;

fr[t_, τ_] := a*Sin[s]*HeavisideTheta[τ - t]
ft[t_, τ_] := a*Cos[s]*r[t]*HeavisideTheta[τ - t]
fm[t_, τ_] := -p/(τ - p*t)*HeavisideTheta[τ - t]
sol = NDSolve[{r''[t] == -fm[t, τ]*r'[t] + h[t]^2/r[t]^3 - 
     g R^2/r[t]^2 + fr[t, τ], r[0] == R, r'[0] == 0, 
   h'[t] == -fm[t, τ]*h[t] + ft[t, τ], h[0] == 0}, {r, 
   h}, {t, 0, T}]
f[t_] := r[t] /. sol[[1, 1]]
d[t_] := h[t] /. sol[[1, 2]]
Plot[{6350, f[t]}, {t, 0, T}]
Plot[{f[t + 1] - f[t], d[t]*R/f[t]^2, d[t]/f[t]}, {t, 0, T}, 
 PlotRange -> {-4, 8}]
tyx[TT_] := {TT, f[TT] - R, NIntegrate[R d[t]/f[t]^2 , {t, 0, TT}]}
tyx[T]
ParametricPlot[{NIntegrate[R d[t]/f[t]^2 , {t, 0, tt}], 
  f[tt] - R}, {tt, 0, T}]


図:11月3日朝の弾道ミサイルのロフテッド軌道

P. S. 1  成功したロフテッド軌道(最大高度6250 km,到達距離1090 km,到達時間 4000 秒)の条件で,投射角度を45度にすると,到達時間 4850秒で到達距離 14300 kmとなる。北米大陸は射程内だ。

P. S. 2  アメリカの軍事偵察衛星からでは発射直後の赤外線を感知できるが,日本のレーダーでは,高度100 kmに達しないと感知できないという説明がサンデーモーニングであった。もしそうならば,上記の11月3日朝のロフテッド軌道が感知できたのは,発射後66秒後となる。

P. S. 3  仮に上記弾道ミサイルの第1段が,同じ条件で燃料噴射後60秒で放物運動に至る物体だとすれば(切り離された第1段とは正確には一致しないが),それは(最大高度 1000 km,到達距離 470 km,到達時間 1100 秒)で飛行することになる(高度100 km に達するのは 発射後 64秒後)。

[1]ミサイル防衛について(防衛省・自衛隊)
[2]弾道ミサイル防衛(平成20年3月,防衛省)
[3]国民保護ポータルサイト(内閣官房)
[5]北朝鮮からの射程距離(地図蔵)

2022年11月3日木曜日

團十郎への道

NHKアーカイブズ あの日 あのとき あの番組で「大看板 團十郎への道」(1985)が再放送されていた。これは市川團十郎(12代目)(1946-2013)の1985年4月の襲名前後を記録したNHK特集だが,スタジオには,先日襲名披露が行われたばかりの市川團十郎(13代目)と息子の市川新之助(8代目)が招かれて,今回のアナウンサーの森田美由紀さんがインタビューしていた。チコちゃんのナレーションでおなじみの森田さんももう還暦を過ぎている。

インタビューの応答も含めて,どうも当代の市川團十郎は苦手なタイプだ。息子も同様になりそう。先代の市川團十郎は海老蔵という名前で記憶にインプットされているのだが,こちらもちょっとだった。そもそも歌舞伎を始めて見たのは,文楽を見るようになってからなので,團十郎といわれてもいまひとつその重要性がピンと来ない。

歌舞伎役者といえば,テレビにでてくる尾上松緑(二代目)とか尾上菊之助(四代目),舞台に出てくる松本幸四郎(九代目),あるいは映画に出てくる中村鴈治郎(二代目)の印象があるくらいだった。

さて,その1985年のNHK特集では竹本住大夫(1924-2018)を襲名する直前の竹本文字大夫が,浄瑠璃(弁慶)を襲名前の市川海老蔵(10代目)に指導するシーンがかなり長い時間を割いて取り上げられていた。この22歳年上の住大夫の指導はなかなかに厳しいのである。もちろん,弟子の文字久大夫への指導の場合とは比べものにはならないが,声が腹から出ない海老蔵は汗だくになりながらダメ出しされ続けるのだった。

2022年11月2日水曜日

戦争と人間(2)

戦争と人間(1)からの続き

三部作の映画で描かれた(言及された)事件はおよそ次のようなものだった。

    三・一運動(1919.3.1) 万歳事件
    https://ja.wikipedia.org/wiki/三・一運動
    三・一五事件(1928.3.15)
    https://ja.wikipedia.org/wiki/三・一五事件
    済南事件(1928.5.3)
    https://ja.wikipedia.org/wiki/済南事件
    張作霖爆殺事件(1928.6.4)
    https://ja.wikipedia.org/wiki/張作霖爆殺事件
    易幟(えきし)(1928.12.19) 張学良
    https://ja.wikipedia.org/wiki/易幟
    間島共産党暴動(1930.5.30)
    https://ja.wikipedia.org/wiki/間島共産党暴動
    霧社事件(1930.10.27)
    https://ja.wikipedia.org/wiki/霧社事件
    中村大尉事件(1931.6.27)
    https://ja.wikipedia.org/wiki/中村大尉事件
    万宝山事件(1931.7.2)
    https://ja.wikipedia.org/wiki/万宝山事件
    満州事変(1931.9.18)
    https://ja.wikipedia.org/wiki/満洲事変
    第9師団
    https://ja.wikipedia.org/wiki/第9師団_(日本軍)
    第一次上海事変(1932.1.28)
    https://ja.wikipedia.org/wiki/第一次上海事変
    満州国設立(1932.3.1)
    https://ja.wikipedia.org/wiki/満洲国
    五・一五事件(1932.5.15)
    https://ja.wikipedia.org/wiki/五・一五事件
    国際連盟脱退(1933.3.27)
    https://ja.wikipedia.org/wiki/国際連盟
    相沢事件(1935.8.12)
    https://ja.wikipedia.org/wiki/相沢事件
    二・二六事件(1936.2.26)
    https://ja.wikipedia.org/wiki/二・二六事件
    関東軍防疫部設置(1936.4.23)
    https://ja.wikipedia.org/wiki/731部隊
    盧溝橋事件(1937.7.7)
    https://ja.wikipedia.org/wiki/支那事変
    第二次上海事変(1937.8.13)
    https://ja.wikipedia.org/wiki/第二次上海事変
    国共合作(1937.9.22)
    https://ja.wikipedia.org/wiki/国共合作
    南京事件(1937.12.1)
    https://ja.wikipedia.org/wiki/国共合作
    国家総動員法(1938.4.1)
    https://ja.wikipedia.org/wiki/国家総動員法
    重慶爆撃(1938.12.26)
    https://ja.wikipedia.org/wiki/重慶爆撃
    ノモンハン事件(1939.5.11)
    https://ja.wikipedia.org/wiki/ノモンハン事件

参謀の辻政信は,ノモンハン事件でも相変わらずろくでもない動きをしていた。この映画では南京事件はあまり強調されていなかった。調べていたら,金沢の第九師団が第二次上海事変に動員されていて,その延長で南京事件に深く関わっていた(岡野君江)ことがわかった。

「戦争と人間」の映画は,東京裁判に至る第四部まで制作する予定だったが,資金が集まらずに第三部で終ってしまったようだ。このため,いろいろと伏線が回収されずじまいの不満が残る。完結編の後半はほとんどノモンハン事件の戦闘シーンであり,戦争の残虐さを表現するということだったかもしれないが,良かったのか悪かったのか・・・。

2022年11月1日火曜日

戦争と人間(1)

先日WOWOWで放映していた,五味川純平原作,山本薩夫監督の「戦争と人間」三部作を録画していたので,さっそく見ている。

第一部「運命の序曲」が1970年,第二部「愛と悲しみの山河」が1971年,第三部「完結編」が1973年の公開で,高校生か大学生のときに映画館で一通り見ている。日清・日露戦争の後,中国大陸に進出した日本が侵略戦争をはじめる満州事変前夜の1928年の張作霖爆殺事件から太平洋戦争に至る前の1939年のノモンハン事件まで10年余りを描いたものだ。

日本を代表する俳優陣が数多出ているため,タイトルバックの俳優名は男女別アイウエオ順で100名近くの名前があった。50年前の映画なので既に物故している方も多い。一番印象的なのは伍代財閥の満州における権益を握っていた伍代喬介役の芦田伸介(1917-1999)だった。それに比べると高橋英樹も高橋悦史も高橋幸治もチンピラのようなものだ。まだ若い岸田今日子(1930-2006)がいい味を出している。

もう少し内省的で暗い感じだと想像していた石原莞爾のイメージにカリスマは感じられず,ちょっと違っているような気がする。

記憶の中では,モノクロームの映像でノモンハンの平原を北大路欣也の伍代俊介がボロボロになりながら歩いているのだった。そこに娼婦に身を落とした女性が待っているというシーンがくる。その女性が浅丘ルリ子だと話の辻褄が合わないので,どういうことなのかと思ったが,夏純子だったので納得がいった。ただ,記憶していたモノクロシーンではなかった。

2022年10月31日月曜日

門の会


阪大マンドリンクラブに門の会というOB会があるという話は,1970年代当時から聞いたことがあった。しかし実際にはその後の活動はなかったらしい。そこで,2019年の10月13日にあらためて規約が定められ阪大マンドリンクラブ同窓会「門の会」が設立された。

その規約によれば,「門の会」という名称の由来は,1966 年 5 月クラブ創立者の松本守氏(故人)の次の言葉によるものだとのこと。
 「我等 門に入り 門を出で 門に還る 幾星霜 この門に 変らざる事を」
ホームページには少しだけ過去の資料があったので,関係部分だけ抜粋転載してみる。
阪大マンドリンクラブの歴史 (注:昭和41年〜昭和52年まで)
S. 41. 1 松本守氏 阪大マンドリンクラブを創設
・・・(中略)
S. 47. 1 部長 塚本氏→西村氏
     教養部 スト突入
    4 高松にて合宿 合宿中流れたはずの後期試
     験がありとの報にあわてて帰阪するも試験
     は流れる
    5 箕面帝釈寺にて新入生歓迎合宿
     はじめて外国人留学生入部
     和歌山での選曲をめぐってビートルズ派と
     オリジナル派論争
    7 和歌山特別演奏会
     司会者のうまさか,とにかく部員と観客が
     一体となって演奏を楽しんだ
    8 信州黒岩にて合宿
     山の上の池で泳ぐ 合宿でもハイキング恒
     例化 はじめて酒が入る(コンパ以外で)
S. 47.12 第4回定期演奏会
     そのまま泊まり込みコンパへへ突入
S. 48. 1 部長西村氏→徳井氏
     大量留年時代に入る
    4 土庄(小豆島)にて春合宿 自動車(若者)バ
     ス(幼児)自転車組(老人)と分かれて小豆島
     を動きまわる
     銀杏祭に出演し大好評
      …酒を飲んで演奏した人がいたとか…
    7 九重高原にて夏合宿 寒さのためカゼ大流行
     ハイキングの帰り人と車の競争…人が勝つ
   10 服部緑地YHにて合宿
   11 第5回定期演奏会
S. 49. 1 部長 徳井氏→井元氏
    3 加古川演奏会に向けて加古川へ数十回でか
     ける
     (車の所有者ガソリン代に泣く 有留も泣く)
     小豆島にて4度めの春合宿
    5 加古川特別演奏会
     (会場前から長蛇の列,マンドリンの人気に
     一同驚くやら喜ぶやら)
     教養部スト突入 麻雀大流行
S. 49. 8 白馬大池(信州)にて夏合宿
   11 びわこ青少年の家にて強化合宿
     第6回定期演奏会
S. 50. 1 部長 井元氏→土岐氏
     ・・・
    6 奈良特別演奏会
・・・(以下略)

第4回定期演奏会 1972.12
  プロバンズ序曲・森の写影・海の悲劇
  LP「ABBY ROAD」より・カストリュークの歌・海に来たれ
  メリアの平原にて・マッサリア・劇的序楽

第5回定期演奏会 1973.11
  青春の思い出・夜想的間奏曲・情熱的組曲
  夢うつつ・過去への憧れ
  管弦楽組曲第2番序曲
  小英雄・マルネリラ・序曲ニ短調

第6回定期演奏会 1974.11
  バートバカラック特集
  祝典輪舞曲
  序曲5番ハ長調
  祈り・イタリアの覚醒・恵まれた結婚
自分が在籍したのは,1972年の5-6月から1974年の12月までだった。その間の定期演奏会や特別演奏会,合宿などにはいずれも参加しているので,いろいろ思い当たることも。信州黒岩の合宿ではボート遊びをしていた山の上の池で泳いだし,小豆島の合宿では老人組?の自転車ツアーに加わって小豆島を一周した。

三重県和具の海の家にいって,島のまわりをみんなで浮輪に捕まりながらまわった記憶があるのだけれど,あれは,クラブの合宿ではなかったのだろうか。同学年のメンバーの顔しか思い浮かばないので,クラブ全体の行事ではなかったのかもしれない。あるいは夢だったかも。

P. S. 塚本部長は金沢大学附属高校出身で,西村部長は兵庫県養父郡出身の西村さんの親戚らしく,徳井部長は金沢泉丘高校の先輩だった。

     

2022年10月30日日曜日

待兼山俳句会

せとちとせ(2)からの続き

瀬戸さんを探しているうちに,阪大の待兼山俳句会にたどりついた。2015年までの句会報が公開されていて,高齢化やコロナ禍のために活動も終息したのかとおもいきや。

Wix.comに新しい待兼山俳句会のホームページができて引き継がれていた。今年の5月の句会報までが公開されている。令和2年2月には合同句集「待兼山」第4集がf出版されていた。なんと,瀬戸さん(俳号:瀬戸幹三)が句会の選者になって,序文を書いていた。その著者紹介には下記のような説明があった。
二〇〇一年,(株)博報堂の社内俳句会「源八句会」に参加。二〇〇六年,待兼山俳句会に投句を始め,現在に至る。「雲」同人,俳人協会会員。著書に「たのしい回文」「笑う回文教室」(創元社)

瀬戸さんは 基礎工学部の情報工学科を卒業したのだけれど,本人もおっしゃっているように,文科系人間,言葉の人だったのだ。これにビートルズマニアが加わっている。 それは広告会社博報堂にぴったりの人材だった。

待兼山俳句会の会員は,ほとんど高齢者なのだけれど,つらつらと眺めていると向井邦夫先生の名前があった。大阪教育大学でフランス語を教えており,瀬戸さんより10歳年上だ。阪大の文学部・大学院を修了されている。フランス語の先生といえば,なんだか近寄りがたい人が多かったので,在職時代に向井先生とお話したことはなかった。

P. S. 半導体の大塚穎三先生や元総長の平野俊夫先生のお名前もあった。「待兼山」第4集に寄稿された会員の年齢構成は60代以下が2名,70代が8名,80代が19名,90代が6名だ。出身学部等は,文学部11名,薬学部6名,浪高6名などとなっていた。

[1]せとちとせ(Instagram)

2022年10月29日土曜日

せとちとせ(2)

せとちとせ(1)からの続き

阪大マンドリンクラブのOB会は門の会という名前で活動している。一度も参加したことはないのだけれど,メールは時々送られてくる。

最近,総会があったということで写真が送られてきた。知っている顔を探すと,指揮者だったギターの西尾君や人間科学部一期生の上条君の同期の他,セロパートの2学年先輩の近藤さんがケーナ演奏で参加していた。ベースの瀬戸さんが近藤さんの隣でギターを演奏しているという動画をみたが,昔の印象と全く違っているのだった。もっと顔が丸くて髪がモジャモジャでガッチリしていたように思うのだが,なんだかシュっとした髪の薄い小柄なおじさんに変化していた。

「この顔は瀬戸さんとちゃうんちがう」「いや,大阪芸術大学で広告制作を教えているみたいやで」「ほなやっぱり瀬戸さんやな」「でもその写真の顔やっぱりちゃうやん」「ビートルズのテーマで講演してはるよ」「ほなやっぱり瀬戸さんやな」「でもその写真の顔やっぱりちゃうやん」「阪大の待兼山俳句会に参加してはるで,俳号は瀬戸幹三や。昭和49年基礎工学部卒てかいたるで」「ほなやっぱり瀬戸さんやな」

2022年10月28日金曜日

キュリー夫人

あんまり好きじゃない藤原帰一が,NHK BSのニュース番組キュリー夫人の映画を紹介していた。さっそく,京都アップリンクに見に行く。烏丸御池駅下車2分の新風館地下の便利なところにあるこじんまりとした映画館だ。40席弱のシアターが4つあり,入館チケット販売が全自動化されている。

これは2019年のイギリスの伝記映画,ハンガリーやスペインで撮影・制作されている。登場人物は英国系なので,フランスっぽさがあまり感じられない。アングロサクソンの気の強い女性とヒゲのおじさんたちが登場し,途中にイメージ映像とか時空を超えたカットバックシーンがいくつか挿入されている。誰かの映画批評にもあったけれど脚本がちょっとイマイチだったかもしれない。監督は,マルジャン・サラトビ,イラン出身のフランスの漫画家だ。

科学者の伝記映画といえば,10年ほど前に見た,高峰譲吉の「さくら、さくら 〜サムライ化学者・高峰譲吉の生涯〜」以来になる。これは主演が加藤雅也だったのか。映画だと短時間に最小限必要なエピソードを網羅しようということになって,どうしても物語がぎくしゃくする。やはり,人物の歴史を軸にする場合はNHK大河ドラマくらいの時間が必要なのかもしれない。

映画「キュリー夫人」の場合は,ピエールとマリーの出会いから始まり,ラジウムの発見,降霊会への参加,ノーベル賞,ピエールの死,ポール・ランジュバンとの恋愛騒動,第一次世界大戦,娘のイレーヌなどのエピソードが重ねられ,そこに,加速器によるガン治療,ヒロシマの原爆,第二次世界大戦後の原爆実験,チェルノブイリ原発事故などのシーンが挿入されていた。

放射能の発見は授業で取り上げたところだったので,もう少し新しい情報が得られるかと思ったが,(1) ピエールが開発して研究の切り札になったピエゾ電位計の実体イメージ,(2) ピエールが降霊会にはまっていたこと,(3) マリーとイレーヌが第一次世界大戦中にレントゲン車を作って治療にあたったこと,などか。なお,1903年のノーベル賞授賞式には夫婦揃って参加していないようだ。

20年ほど前に,黒柳徹子主演で「喜劇キュリー夫人」という舞台を梅田でみたが,こちらの方はもっとマイルドな味付けだった。いずれの場合も,3トンのピッチブレンドを大釜で炊いてポロニウムやラジウムを生成する過程が印象深く描かれていた。キュリー夫妻の実験室も,ほとんど化学の実験室として描かれていた。まあ1911年にはノーベル化学賞を受賞したのだからそうなのかもしれない。

なお,ピエールマリー・キュリーとその娘夫婦のノーベル賞受賞理由はそれぞれ次のようになっていた。

The Nobel Prize in Physics 1903 was divided, one half awarded to Antoine Henri Becquerel "in recognition of the extraordinary services he has rendered by his discovery of spontaneous radioactivity", the other half jointly to Pierre Curie and Marie Curie, née Sklodowska "in recognition of the extraordinary services they have rendered by their joint researches on the radiation phenomena discovered by Professor Henri Becquerel"

The Nobel Prize in Chemistry 1911 was awarded to Marie Curie, née Sklodowska "in recognition of her services to the advancement of chemistry by the discovery of the elements radium and polonium, by the isolation of radium and the study of the nature and compounds of this remarkable element"

The Nobel Prize in Chemistry 1935 was awarded jointly to Frédéric Joliot and Irène Joliot-Curie "in recognition of their synthesis of new radioactive elements"



写真:ピエゾ電位計とマリー&イレーヌ・キュリー(Wikipediaから引用)

[1]キュリー夫人(石原純)
[2]ラジウム発見100年(環境研ミニ百科)

2022年10月27日木曜日

ドーナツ地球(3)

ドーナツ地球(2)からの続き 

12個の球で近似するくらいならば,いっそのことドーナツ型の内部に一様分布する無数の質点モデルをとったほうがよいかもしれない。$\bm{r}$の位置における単位質量に対する万有引力のポテンシャルは,$V(\bm{r}) = \sum_{i=1}^{N} \dfrac{G m_i }{\sqrt{(\bm{r}-\bm{r}_i )^2}}$である。$N$ 個の質点は,質量 $m_i = \frac{M}{N}$,位置ベクトル$\ \bm{r}_i\ $で与えられ,空間に一様分布している。

トーラス(ドーナツ)は,円環の半径が$R$で,断面が半径$a$の円形であるとする。$\ \bm{r}=(x,y,z)\ $とすると,$x=\cos\phi (R + r \cos\theta)$,$ y=\sin\phi (R + r \sin\theta)$,$z = r \sin\theta )$ と表わすことができる。ただし,$\phi$はトーラス中心に対し円環上で$x$軸から測った方位角,$\theta$はトーラス断面円の中心に対し$x-y$平面から測った仰角で,トーラス中心に遠い方から測ったものである。

トーラス断面円の中心からの距離が$r$であり,$(x-R \cos\phi)^2+(y-R \sin\phi)^2 +z^2 = r^2\ $である。そこで,トーラス面上の点は,$(x-R \cos\phi)^2+(y-R \sin\phi)^2 +z^2 = a^2\ $を,トーラス内部の点は不等式$\ (\sqrt{x^2+y^2}-R)^2 + z^2 < a^2\ $を満足する。

m = 1000000; R = 2.0; r = 1.0;
t = Table[{RandomReal[{-3, 3}], RandomReal[{-3, 3}], 
    RandomReal[{-3, 3}]}, m];
(* s = Select[t,(#[[1]]^2+#[[2]]^2+#[[3]]^2)<1 &]; *)

s = Select[t, ((Sqrt[#[[1]]^2 + #[[2]]^2] - R)^2 + #[[3]]^2) < 1 &]; 
smax = Length[s]
n[w_] := 1/Sqrt[w[[1]]^2 + w[[2]]^2 + w[[3]]^2 + 1/smax]
ListPointPlot3D[s, BoxRatios -> Automatic]


図1:トーラス内部に一様分布する質点

p = {4 - z, 0, 0};
d = Table[p - s[[i]], {i, 1, smax}];
w = 1/smax*Sum[n[d[[k]]], {k, 1, smax}];
v[z_] := w
g[1] = Plot[v[z], {z, 0, 8}]
p = {0, 0, z - 4};
d = Table[p - s[[i]], {i, 1, smax}];
w = 1/smax*Sum[n[d[[k]]], {k, 1, smax}];
v[z_] := w
g[2] = Plot[v[z], {z, 0, 8}]

図2:万有引力ポテンシャルの値(左x軸上,右z軸上)

不連続な質点モデルで計算しているため,たまたま観測点が質点と重なると大きなスパイクが現れる。この現象を緩和するため,分母にくる距離の項 n[d[[k]]] において,1/smaxという微小項を加えている。

2022年10月26日水曜日

ドーナツ地球(2)

ドーナツ地球(1)からの続き

前回のモデル式をMathematicaで書くと次のようになる。地球の半径を$R \rightarrow r$としており,重力加速度の大きさは,${\rm [g]}=\dfrac{GM}{R^2}$を単位として得られたものになる。変数$t$が,重力の大きさを検討している大円上の角度になる。
v = Table[{2 r Cos[Pi/6 i], 2 r Sin[Pi/6 i], 0}, {i, 1, 12}];
d = Table[{2 r + r Cos[t], 0, r Sin[t]} - v[[i]], {i, 1, 12}];
n[w_] := w/Sqrt[w[[1]]^2 + w[[2]]^2 + w[[3]]^2]
m[i_] := (1 + Mod[i + 1, 2])/2
f = Sum[n[d[[i]]]*m[i], {i, 1, 12}];
g[t_] := f /. r -> 1.0
Plot[g[t], {t, 0, Pi}]
Plot[{Sqrt[g[t][[1]]^2 + g[t][[3]]^2], 
    180/Pi*ArcTan[g[t][[3]]/g[t][[1]]]}, {t, 0, Pi}];
vp = Table[{{Cos[t], Sin[t]}, {-g[t][[1]], -g[t][[3]]}}, 
    {t, 0., Pi, Pi/30}];
g1 = ListVectorPlot[vp, AspectRatio -> 0.5];
g2 = Graphics[{White, Disk[{0, -0.05}, 0.95, {0, Pi}]}];
Show[g1, g2] 

 


図1:重力加速度の方向依存性(大きさ,x成分,z成分 vs 大円上の角度 t )



図2:断面における重力加速度ベクトル場の様子(x = -2.0 がドーナツの中心)

ドーナツ地球の外側で8G,内側で2G(ただしドーナツの中心を向く)となった。ということは,断面図が円形の状態では安定な物質分布とならないわけか。

2022年10月25日火曜日

ドーナツ地球(1)

ドーナツ地球というのが目に入った。次のようなイメージである。 


図:ドーナツ地球のイメージ(どこぞのYouTubeから引用)

詳しい話が,Gigazineの2014年の「もしもドーナツ状の地球が存在したらそこはどんな世界なのか」にあった。その元記事は,Anders Sandbert のdistributed brainにある Torus-Earth である。重力の大きさ(等ポテンシャル面)の分布図があったけれど,いまいちピンと来ない。

自分で計算してみようとしたけれど,どうやって積分したらよいかで行き詰まる。そもそも,これを太さのない線密度だけのリングだとしても,楕円積分が出てきてどうしましょう状態になりそうだ。円環状の電荷分布が作る電場や電位の演習問題と等価だが,円環の中心を通る対称軸上の値を求める問題解答しかみあたらない。

そこで,このドーナツを球に分割して,その和で重力を近似してみることにする。ドーナツの穴が1地球分空いていて,まわりに6地球を配置すると収まりがよい。取り巻く地球間の6つの隙間は,それぞれ約1/2地球分の体積となる。そこで,その分の小地球を6地球の間に重ねて配置し,重力はこれらの12個の大小の地球を各中心に質量が集中した質点だと近似して計算する。

6地球の1つ(中心の座標が$\bm{R_N}$)を取り出して,トーラスの円環軸に垂直な断面の大円をとる。大円上の点Pの座標を$\bm{r}=  \bm{R_N} + (R \cos \theta, R \sin \theta ) \quad 0 \le \theta \le \pi $とする。P上の質量$m$の物体に働く重力加速度は $\bm{F}/m = \sum_{i=1}^{12} G M_i \dfrac{\bm{r}-\bm{R}_i }{|\bm{r}-\bm{R}_i |^2}$となる。


図:ドーナツ地球を球体の集合で近似する

2022年10月24日月曜日

ウィーンの変位則

非常勤の授業準備をしていると,自分の理解の穴がいたるところに待ち受けている。ウィーンの変位則は,プランクによる量子の発見にいたる重要なマイルストーンであるが,ここにも落とし穴をひとつ発見。

ウィーンの変位則は,黒体放射のエネルギーがピークとなる電磁波(光)の波長$\ \lambda_m \ $と黒体の温度$\ T \ $との間に $\lambda_m = \dfrac{b}{T}$という反比例の関係があるというものだ。例えば,高温の物体からの電磁波は短波長側にシフトすることになり,溶鉱炉中の鉄の色は温度が上昇するとともに,赤から黄に変化する。温度の低い星は赤く,温度の高い星は青いのもこのためだ。

古典電磁気学と熱力学だけから導いた黒体放射のスペクトルは,レイリー・ジーンズの法則を満たすが,これはウィーンの変位則を満足しない。黒体放射スペクトルの短波長側によく当てはまり,ウィーンの変位則が成り立つのはヴィーンの放射法則だ(慣用的に同じ人名をウィーンとヴィーンで使い分けるのはなんとかならんのか)。これら両者を統合して電磁波の全波長領域のスペクトルを再現したのがプランクの法則で,量子の発見につながった。

授業の演習課題で,プランクの法則からウィーンの変位則を導く問題をつくったところ,面倒なことに,指数関数を含んだ非線形の方程式がでてきた。そういえば,ランベルトのW関数というのは見覚えがあった。しかたがないので,ヴィーンの法則に置き換えたが,こんどは,振動数$\ \nu \ $の関数にするか,波長$\ \lambda \ $の関数にするかで,ピークは変わってくる。$\nu_{\rm max} \cdot \lambda_{\rm max}=c\ $が満たされないのを見落としていた。

そういえば,昔,岩波の「現代物理学の基礎」で量子力学の勉強を始めようとしたときに,黒体放射の式がよくわからずにいきなり挫折したことを思い出した。$d\nu = -\frac{c}{\lambda^2}\ d\lambda \ $を忘れてはいけない。

(1) ウィーンの放射法則
$u(\nu) = \dfrac{8\pi h}{c^3}\nu^3 e^{-h\nu / kT}$より,$\dfrac{du(\nu)}{d\nu} =0 \rightarrow \nu = \frac{3kT}{h}$
$w(\lambda) = \dfrac{8\pi hc}{\lambda^5} e^{-h / kT \lambda}$より,$\dfrac{dw(\lambda)}{d\lambda} =0 \rightarrow \lambda = \frac{hc}{5kT}$

(2) プランクの法則
$u(\nu) = \dfrac{8\pi h}{c^3}\nu^3 \dfrac{1}{e^{h\nu / kT}-1}$より,$\dfrac{du(\nu)}{d\nu} =0 \rightarrow (3-x) e^x = 3 \quad (x=\frac{h\nu}{kT}=2.821= 3. + {\rm ProductLog[-3 E\hat{}-3]})$
$w(\lambda) = \dfrac{8\pi hc}{\lambda^5} \dfrac{1}{e^{h / kT \lambda}-1}$より,$\dfrac{dw(\lambda)}{d\lambda} =0 \rightarrow (5-x) e^x=5 \quad (x=\frac{h}{kT\ \lambda}=4.965=5. + {\rm ProductLog[-5 E\hat{}-5]})$


図:ランベルトW関数の例,$(n-x)e^x=n$の逆数の図($n=3,5$)

2022年10月23日日曜日

宗教法人法

統一教会(世界平和統一家庭連合)の宗教法人としての解散命令は,宗教法人法に規定されている。宗教法人法は,宗教団体に宗教法人という種類の法人格を与えることが目的となっている。裁判所が宗教法人に対する解散命令を出せば,その宗教法人は再び法人格を持たない宗教団体に回帰する。以下,関連事項の抜粋を引用する。
第一章 総則
(この法律の目的)
第一条 この法律は、宗教団体が、礼拝の施設その他の財産を所有し、これを維持運用し、その他その目的達成のための業務及び事業を運営することに資するため、宗教団体に法律上の能力を与えることを目的とする。
2 憲法で保障された信教の自由は、すべての国政において尊重されなければならない。従つて、この法律のいかなる規定も、個人、集団又は団体が、その保障された自由に基いて、教義をひろめ、儀式行事を行い、その他宗教上の行為を行うことを制限するものと解釈してはならない。
(宗教団体の定義)
第二条 この法律において「宗教団体」とは、宗教の教義をひろめ、儀式行事を行い、及び信者を教化育成することを主たる目的とする左に掲げる団体をいう。
一 礼拝の施設を備える神社、寺院、教会、修道院その他これらに類する団体
二 前号に掲げる団体を包括する教派、宗派、教団、教会、修道会、司教区その他これらに類する団体
(法人格)
第四条 宗教団体は、この法律により、法人となることができる。
2 この法律において「宗教法人」とは、この法律により法人となつた宗教団体をいう。
(公益事業その他の事業)
第六条 宗教法人は、公益事業を行うことができる。
2 宗教法人は、その目的に反しない限り、公益事業以外の事業を行うことができる。この場合において、収益を生じたときは、これを当該宗教法人、当該宗教法人を包括する宗教団体又は当該宗教法人が援助する宗教法人若しくは公益事業のために使用しなければならない。


第六章 解散
(解散の事由)
第四十三条 宗教法人は、任意に解散することができる。
2 宗教法人は、前項の場合のほか、次に掲げる事由によつて解散する。 
五 第八十一条第一項の規定による裁判所の解散命令


第八章 宗教法人審議会
(設置及び所掌事務)
第七十一条 文部科学省に宗教法人審議会を置く。
2 宗教法人審議会は、この法律の規定によりその権限に属させられた事項を処理する。
3 宗教法人審議会は、所轄庁がこの法律の規定による権限(前項に規定する事項に係るものに限る。)を行使するに際し留意すべき事項に関し、文部科学大臣に意見を述べることができる。
4 宗教法人審議会は、宗教団体における信仰、規律、慣習等宗教上の事項について、いかなる形においても調停し、又は干渉してはならない。


第九章 補則
(報告及び質問)
第七十八条の二 所轄庁は、宗教法人について次の各号の一に該当する疑いがあると認めるときは、この法律を施行するため必要な限度において、当該宗教法人の業務又は事業の管理運営に関する事項に関し、当該宗教法人に対し報告を求め、又は当該職員に当該宗教法人の代表役員、責任役員その他の関係者に対し質問させることができる。この場合において、当該職員が質問するために当該宗教法人の施設に立ち入るときは、当該宗教法人の代表役員、責任役員その他の関係者の同意を得なければならない。
一 当該宗教法人が行う公益事業以外の事業について第六条第二項の規定に違反する事実があること。
・・・
三 当該宗教法人について第八十一条第一項第一号から第四号までの一に該当する事由があること。
2 前項の規定により報告を求め、又は当該職員に質問させようとする場合においては、所轄庁は、当該所轄庁が文部科学大臣であるときはあらかじめ宗教法人審議会に諮問してその意見を聞き、当該所轄庁が都道府県知事であるときはあらかじめ文部科学大臣を通じて宗教法人審議会の意見を聞かなければならない。
3 前項の場合においては、文部科学大臣は、報告を求め、又は当該職員に質問させる事項及び理由を宗教法人審議会に示して、その意見を聞かなければならない
4 所轄庁は、第一項の規定により報告を求め、又は当該職員に質問させる場合には、宗教法人の宗教上の特性及び慣習を尊重し、信教の自由を妨げることがないように特に留意しなければならない。
5 第一項の規定により質問する当該職員は、その身分を示す証明書を携帯し、宗教法人の代表役員、責任役員その他の関係者に提示しなければならない。
6 第一項の規定による権限は、犯罪捜査のために認められたものと解釈してはならない。

(解散命令)
第八十一条 裁判所は、宗教法人について左の各号の一に該当する事由があると認めたときは、所轄庁、利害関係人若しくは検察官の請求により又は職権で、その解散を命ずることができる
一 法令に違反して、著しく公共の福祉を害すると明らかに認められる行為をしたこと。
二 第二条に規定する宗教団体の目的を著しく逸脱した行為をしたこと又は一年以上にわたつてその目的のための行為をしないこと。
・・・
3 第一項の規定による裁判には、理由を付さなければならない。
4 裁判所は、第一項の規定による裁判をするときは、あらかじめ当該宗教法人の代表役員若しくはその代務者又は当該宗教法人の代理人及び同項の規定による裁判の請求をした所轄庁、利害関係人又は検察官の陳述を求めなければならない。
5 第一項の規定による裁判に対しては、当該宗教法人又は同項の規定による裁判の請求をした所轄庁、利害関係人若しくは検察官に限り、即時抗告をすることができる。この場合において、当該即時抗告が当該宗教法人の解散を命ずる裁判に対するものであるときは、執行停止の効力を有する。
6 裁判所は、第一項の規定による裁判が確定したときは、その解散した宗教法人の主たる事務所の所在地の登記所に解散の登記の嘱託をしなければならない。

   (平成8年1月30日,最高裁判所第一小法廷,決定,棄却)

2022年10月22日土曜日

カーリングの原理(5)

カーリングの原理(4)からの続き

村田次郎さんの結論を整理すると次のように理解できる。


図:カーリングストーン(リングモデル)に働く力

広義の摩擦力は,速度方向と逆向きに働く動摩擦力と,衝突/固着点の回りに働く旋回力から成り立つ。その向きは図のように表わされる。衝突/固着の瞬間の撃力の寄与を除く旋回力はストーンの中心から衝突/固着点までの位置ベクトルと同じ向きになり,動摩擦力は進行方向の速度ベクトル$\bm{u}$と回転方向の速度ベクトル$\bm{w}$を合成したものと逆方向になる。

これらの力をリング上で平均すれば対称性によっていずれの場合もその合力は0になる。ところで,y軸の正負の領域間でアイスシートに対するストーンの速度に非対称性がある。上半面の速度$v_{-}$は下半面の速度$v_{+}$より小さくなる。旋回力と動摩擦力はともに速度が遅い方が大きいとする。これによって,旋回力では,ストーンの自転方向にカールする力の成分が残るが,同摩擦力では,打ち消し合いが依然として生ずることになる。

$y$軸方向の力を打ち消しあうペアが,同じ速度領域なのか異なった速度領域なのかがポイントだということになる。

(付)旋回力の図で,中心に示した矢印は衝突/固着時の撃力による重心の運動量変化に対応する力を現したものである。この項も,速度の非対称性の有無にかかわらず,キャンセルする項になっている。

付録(TikZでの変数や反復の方法について少しだけ勉強した):

\begin{tikzpicture}
\tikzstyle{every node}=[font = \large];
\draw[step=1.0, dotted] (-7.5,-3.5) grid (7.5,3.5);
\draw[->] (-7.5,0) -- (-0.5,0) node[below left]{$x$};
\draw[->] ( 0.5,0) -- ( 7.5,0) node[below left]{$x$};
\draw[->] (-4,-2.5) -- (-4,2.5) node[left]{$y$};
\draw[->] ( 4,-2.5) -- ( 4,2.5) node[left]{$y$};
\draw (-4,0) circle(2) circle(1pt) node[below left]{${\rm O}_1$};
\draw ( 4,0) circle(2) circle(1pt) node[below left]{${\rm O}_2$};
\draw[
<- br="" gray="" thick="" ultra=""> \node at (-3,0) [above right]{$u$};
\node at (-4,-3) [red, above]{旋回力の方向};
\draw[->, thick, gray] (-4,-0.5) arc [start angle=-90, end angle=90, radius=0.5] node[left]{$w$};
\draw[
<- 4="" 5="" br="" gray="" thick="" ultra=""> \node at (5, 0) [above right]{$u$};
\node at (4,-3) [blue, above]{動摩擦力の方向};
\draw[->, thick, gray] ( 4,-0.5) arc [start angle=-90, end angle=90, radius=0.5] node[left]{$w$};
\draw[dashed, blue] (6,1.4)--(2,1.4);
\draw[dashed, blue] (6,-1.4)--(2,-1.4);
\draw[dashed, red] (-5.4,-2)--(-5.4,2);
\draw[dashed, red] (-2.6,-2)--(-2.6,2);
\node[purple] at (-3.3, 0.5) {2,4};
\node[purple] at (-3.3,-0.5) {1,3};

\foreach \t/\s/\r/\d\q in {1/10/-1/0/{-}, 3/5/0/0/{-}, 5/-5/0/0.4/{+}, 7/-10/-1/-0.4/{+}}
{
\tikzmath{
integer \n, \m;
\n = (\t+1)/2; \m=abs(4-\t)-2;
\x1 = -4+2*cos(\t*45); \y1 = 2*sin(\t*45);
\u1 = -4+2.5*cos(\t*45); \v1 = 2.5*sin(\t*45);
\w1 = -4+1.5*cos(\t*45); \z1 = 1.5*sin(\t*45);
\x2 = 4+2*cos(\t*45); \y2 = 2*sin(\t*45);
\u2 = 4+(2.5+\r)*cos(\t*45+\s); \v2 = (2.5+\r)*sin(\t*45+\s);
\w2 = 4+1.5*cos(\t*45); \z2 = 1.5*sin(\t*45);
}
\filldraw[red] (\x1,\y1) circle(2pt) (\w1,\z1) node{$\n\ v_\q$};
\draw[->, thick, red] (\x1,\y1)--(\u1,\v1);
\draw[->, thick, purple] (-4,0)--({\m*(\u1-\x1)-4},{\m*(\v1-\y1)});
\filldraw[blue] (\x2,\y2) circle(2pt) (\w2,\z2) node{$\n\ v_\q$};
\draw[->, thick, blue] (\x2,\y2)--(\u2,{\v2+\d});
}
\end{tikzpicture}


2022年10月21日金曜日

カーリングの原理(4)

カーリングの原理(3)からの続き 

問題を現象論的な微分方程式で扱えれば簡単なのだが,動摩擦力だけではカールがうまく説明できない。もちろん,進行方向前後で動摩擦係数が異なり,進行方向後部の摩擦が大きいとすればよいのだけれど,物理的な理由づけが難しい。

村田さんの精密実験の結論は「摩擦=微小な衝突の重ね合わせとして,離散的な摩擦支点中心の旋回が,左右非対称な頻度で起こる」というもので「従来の左右非対称摩擦説を支持するものであった」とまとめられている。

実験データの分析や結論は問題ないが,最後のまとめ方がちょっと納得できない。というのも普通の動摩擦力であれば,物体の速度と逆方向に働くのだけれど,摩擦支点中心の旋回力=動摩擦力(旋回)の向きは通常の動摩擦力(並進)とは異なる。もちろん広義の摩擦ということではくくることはできるだろうが,現象論的には動摩擦力(並進)および動摩擦力(旋回)として区別して取り扱う方がよいと考えられる。

そこで,$x$軸方向に速度$u$で進む質量$M$,半径$R$の環状ストーンモデルを考える。このリングの進行方向から$\theta$の部分とアイスシートの間に衝突/固着点 P が生じ,これを中心に重心が角速度$\Omega$で旋回運動を始めた場合の旋回力の大きさと方向を求めてみる。

図:衝突/固着点Pの回りの旋回力を導くための概念図

衝突/固着点Pで働く抗力はこの点の回りの角運動量に寄与しないので,点Pの回りの衝突/固着前後の角運動量が保存される。ただしリングの重心の回りの自転角速度は小さいのでその寄与は無視した。保存される角運動量は,$L= M u R \sin \theta = I_{\rm P} \Omega  = 2MR^2 \Omega$である。したがって,$\Omega = \frac{u \sin \theta}{2R}$となる。ここで,$I_{\rm P}= 2MR^2 \ $はP点の回りのリングの慣性能率である。

衝突/固着後に重心は運動量$\ \bm{p}=M\bm{V}=M R\Omega(\sin\theta, -\cos \theta)\ $で動き出す。なお,運動量の大きさは$\ p=MR\Omega\ $である。微小時間$\Delta t$の後,重心は$\ \Omega \Delta t\ $だけ反時計回りに回転し,これにともなって,運動量ベクトルは$\ \Delta {\bm p}=p \Omega \Delta t (\cos\theta, \sin\theta) = M R \Omega ^2  \Delta t (\cos\theta, \sin\theta)\ $だけ変化する。

したがって,衝突/固着時の旋回力は $\bm{F}=\dfrac{\Delta {\bm p}}{\Delta t} = M R \Omega^2 (\cos\theta, \sin \theta) = M \frac{u^2 \sin^2\theta}{4R} (\cos\theta, \sin\theta)\ $である。これについても,幾何学的な対称性によって,このまま一様に角度平均をとればその寄与は0になってしまい,ストーンのカールの原因にはなれない。

そこで,衝突/固着の確率がアイスシートに対する衝突/固着点Pの速度$v(\theta)$に逆比例すると考え,無次元化した$\frac{u}{v(\theta)}$をかける。つまり,旋回力$\ \bm{F}=M \frac{u^3 \sin^2\theta}{4R v(t)} (\cos\theta, \sin\theta)\ $を導入すれば,リングの回転方向にカールすることが説明できることになる。

前回と同様に,Mathematicaで試してみると次のようになる。

mg\[Mu] = 2; mcl = 1; ux = 1; uy = 0; w = 0.1; r = 0.1; q = 0.944;
v[t_] := Sqrt[w^2 - 2*w *(ux*Sin[t] - uy*Cos[t]) + ux^2 + uy^2]
k[t_] := mg\[Mu]/v[t]^1.5 *(1 - q*Cos[t])
F[t_] := -k[t]*{ ux - w * Sin[t], uy + w*Cos[t]}
G[t_] := mcl ux^3/(4 r*v[t])*Sin[t]^3
T[t_] := -r * k[t]*(w + uy*Cos[t] - ux* Sin[t])
Plot[{v[t], F[t], G[t]}, {t, 0, 2 Pi}, PlotRange -> {-3, 3}]
NIntegrate[{F[t], G[t]}, {t, 0, 2 Pi}]

{{-12.5427, 0.592575}, 0.592504}

図:旋回力と前後非対称の動摩擦力の比較
(注)旋回力と同じ効果を与える動摩擦力の前後非対称係数 q を入れた場合


2022年10月20日木曜日

カーリングの原理(3)

カーリングの原理(2)からの続き 

経験的にわかっていることは,(1) ストーンは反時計(左)回りで左にカールし,時計(右)回りで右にカールする,(2) カールする度合いは,回転の大小で余り変わらない,(3) ストーンの並進運動が止まるときに回転も止まる,であるらしい。

理論的には,大きく分けて2つの立場がある。(1) 左右の摩擦係数の違いによる:並進速度と回転速度が加わる部分はアイスシートに対する速度が大きく摩擦係数が小さいが,並進速度から回転速度が引かれる部分はアイスシートに対する速度が小さく摩擦係数が大きい。これがカールの原因となる。(2) 前後の摩擦係数の違いによる:(1) では,円環モデルをとるかぎり横方向の摩擦力は対称性から打ち消しあうので,カールするための原動力がでてこない。ところが,進行方向前後の摩擦係数を変えるとき,後方の摩擦係数が大きければ経験的にしられている回転方向とカール方向の関係が再現できる。

円環モデルの進行方向に対して角度$\theta$の場所にある質量要素のアイスシートに対する速度$v$は,$v = \sqrt{ u_x^2 + u_y^2 + w^2 - 2w (u_y \cos \theta - u_x  \sin \theta ) }\ $ である。つまり,$u_y=0$ならば,$\sin \theta$のみの関数になる。一方,円環モデルの進行方向に対して垂直な方向に現れる摩擦力は,$F_y= - \frac{\mu}{v^p} M g w \ \cos \theta$なので,これを$\theta=0 \sim 2\pi$で積分すれば,必ず0になってしまう。一方,この$\mu$に前後非対称があれば,積分値は0ではなくなる。 

この事情をMathematicaで計算してみると次のようになる。

mg\[Mu] = 2; ux = 1; uy = 0.00; w = 0.1; r = 0.1; q=0.0;
v[t_] := Sqrt[w^2 - 2*w*(ux*Sin[t] - uy*Cos[t]) + ux^2 + uy^2]
k[t_] := mg\[Mu]/v[t]^1.5 *(1 - q*Cos[t]) 
F[t_] := -k[t]*{ux - w*Sin[t], uy + w*Cos[t]}
T[t_] := -r * k[t] * (w + uy*Cos[t] - ux*Sin[t])
Plot[{v[t], F[t], T[t]}, {t, 0, 2 Pi}, PlotRange -> {-3, 3}]
NIntegrate[{F[t], T[t]}, {t, 0, 2 Pi}] 
{{-12.7325, 6.27728*10^-7}, -0.221247}

図:角度の関数としての{速度,摩擦力_x,摩擦力_y,トルク}

・速度方向の逆を向く摩擦力の係数 k[t] にある Cos[t] の項は前後非対称を示す。
・進行方向の速度にy成分u_yを持たせると,その逆方向の摩擦力が働く。

        付録:HTMLにおける表の練習(四字熟語から
 1.羊頭狗肉 2.鶏鳴狗盗 3.鶏口牛後 4.沈魚落雁 5.窮鼠噛猫
 6.烏兎匆匆 7.籠鳥檻猿 8.鶏群一鶴 9.鱸膾蓴羮 10.鯨飲馬食

2022年10月19日水曜日

カーリングの原理(2)

カーリングの原理(1)からの続き 

富山大学の対馬勝年先生が,2013年に「氷雪のトライポロジー」というまとまったレポートを出していた。 ただ,カーリングがカールする根拠としてあげた左右に錘のついた棒のモデルや角度方向の摩擦係数の議論は理解できなかった。

そこで,カーリングのカールに関するこれまでの議論を少し復習してみる。

カーリングのストーンの質量は,$M=20{\rm \ kg}\ $であり,氷上に接するのはランニングバンドとよばれる狭い円環部分である。その半径は$\ R=0.1 {\rm \ m}\ $だ。そこで,ストーンを円環によってモデル化すると,中心の周りの慣性モーメントは,$I = M R^2 = 0.2 {\rm \ kg m^2}\ $となる。ストーンの初速度は,$u_0 = 2 {\rm \ m/s}$,回転を与えた場合の初角速度は,$\omega_0 = 1 {\rm \ rad/s}\ $とする。つまり回転方向の初速度は,$w_0=R \omega = 0.1 {\rm \ m/s}\ $となる。

摩擦のメカニズムを,動摩擦力$\bm{F}\ $ によって現象論的に表現すると,その力は,ストーンと氷の接点の相対速度ベクトル$\bm{v}\ $とは逆向きで,大きさが垂直抗力に比例するものとなる。その比例定数が動摩擦係数 $\ \mu\ $になり,必要ならばこれに速度依存性を導入する。つまり,$\bm{F} =- \mu(v) \ Mg \ \hat{\bm{v}} = -\dfrac{\mu(v)}{v}\ Mg\  \bm{v} \rightarrow -\dfrac{\mu(v)}{v^p}\ Mg\  \bm{v}$。

なお,動摩擦係数の値を$\mu = 0.01 \ $のオーダーとすれば,動摩擦力の大きさは,$F = \mu \ M g = 2 {\rm \ N \ } $となる。ストーンの初期運動エネルギー$K_0$が,停止するまでに摩擦力がする仕事 $F d$と等しいと置けば,$K_0 = \frac{M}{2}u_0^2 = F d \ $から 停止距離は $ \ d= \frac{K_0}{F} = 20 {\rm \ m\ }$ である。

図:カーリングストーンの円環モデル

図の角度$\ \theta \ $ の位置の円環要素$ \delta M(\theta) $の氷に対する相対速度ベクトルは,$\bm{v} = (v_x, v_y)  = (u_x - w \sin \theta, \  u_y + w \cos \theta) \ $であり,その大きさは,$v = \sqrt{v_x^2+v_y^2} = \sqrt{ u_x^2 + u_y^2 + w^2 - 2w (u_y \cos \theta - u_x  \sin \theta ) }\ $である。したがって,摩擦力は,$\bm{F} = - \frac{\mu}{v} M g \  (u_x - w \sin \theta, \  u_y + w \cos \theta) \ $ となる。

また,この円環要素に働く摩擦力のトルクの大きさは,
$ N =  (\bm{R} \times \bm{F})_z = R_x F_y - R_y F_x = R\  ( \cos \theta F_y - \sin \theta F_x) $
$  \quad = - \frac{\mu}{v} R M g \ (w + u_y \cos \theta - u_x \sin \theta )$

2022年10月18日火曜日

カーリングの原理(1)

立教大学の村田次郎さんの名前は,TRIUMFの時間反転実験の記事で知った。偏極したリチウム8のベータ崩壊からでてくる電子の縦偏極との相関をみるというものだ。σ・(j×p) という項の係数Rを調べたところ,時間反転を破る効果は見えていない。最近では余剰次元探索の実験を手がけている。

その村田さんが,カーリングのストーンが曲がる原理を精密実験によって解き明かしたという論文が出た。軽井沢のアイスパークで自分自身が投げた122回のデータを,コンパクトデジタルカメラと三脚だけを用いて測定し,余剰次元実験で開発した画像処理型変位計の技術でミクロン単位で分析した結果である。

その結果は,カーリング石の下面が氷と歯車の様に嚙み合って旋廻する現象が基本であること。摩擦支点の形成確率が,速度に依存することから,速度依存の動摩擦係数が導かれること。動摩擦係数の速度依存性により,左右非対称に旋廻の中心が形成されることがこの謎の答えであることを解き明かしたというものだった。

これによって,時計回り(反時計回り)のストーンは進行方向に向かって右側(左側)に曲がることが説明される。まあ,野球のボールの回転方向と,曲がる方向の関係はマグヌス効果で説明され,カーリングの原理とは違うものの同じ対応関係になっているので,それほど違和感がないかもしれない。 


図:a curling stone rotating, sliding and curving on the ice sheet with pebble olympic fine detailed photo shot from the sealing of curling hall(memeplexによる)