経験的にわかっていることは,(1) ストーンは反時計(左)回りで左にカールし,時計(右)回りで右にカールする,(2) カールする度合いは,回転の大小で余り変わらない,(3) ストーンの並進運動が止まるときに回転も止まる,であるらしい。
理論的には,大きく分けて2つの立場がある。(1) 左右の摩擦係数の違いによる:並進速度と回転速度が加わる部分はアイスシートに対する速度が大きく摩擦係数が小さいが,並進速度から回転速度が引かれる部分はアイスシートに対する速度が小さく摩擦係数が大きい。これがカールの原因となる。(2) 前後の摩擦係数の違いによる:(1) では,円環モデルをとるかぎり横方向の摩擦力は対称性から打ち消しあうので,カールするための原動力がでてこない。ところが,進行方向前後の摩擦係数を変えるとき,後方の摩擦係数が大きければ経験的にしられている回転方向とカール方向の関係が再現できる。
円環モデルの進行方向に対して角度$\theta$の場所にある質量要素のアイスシートに対する速度$v$は,$v = \sqrt{ u_x^2 + u_y^2 + w^2 - 2w (u_y \cos \theta - u_x \sin \theta ) }\ $ である。つまり,$u_y=0$ならば,$\sin \theta$のみの関数になる。一方,円環モデルの進行方向に対して垂直な方向に現れる摩擦力は,$F_y= - \frac{\mu}{v^p} M g w \ \cos \theta$なので,これを$\theta=0 \sim 2\pi$で積分すれば,必ず0になってしまう。一方,この$\mu$に前後非対称があれば,積分値は0ではなくなる。
この事情をMathematicaで計算してみると次のようになる。
mg\[Mu] = 2; ux = 1; uy = 0.00; w = 0.1; r = 0.1; q=0.0;
v[t_] := Sqrt[w^2 - 2*w*(ux*Sin[t] - uy*Cos[t]) + ux^2 + uy^2]
k[t_] := mg\[Mu]/v[t]^1.5 *(1 - q*Cos[t])
F[t_] := -k[t]*{ux - w*Sin[t], uy + w*Cos[t]}
T[t_] := -r * k[t] * (w + uy*Cos[t] - ux*Sin[t])
Plot[{v[t], F[t], T[t]}, {t, 0, 2 Pi}, PlotRange -> {-3, 3}]
NIntegrate[{F[t], T[t]}, {t, 0, 2 Pi}]
{{-12.7325, 6.27728*10^-7}, -0.221247}
図:角度の関数としての{速度,摩擦力_x,摩擦力_y,トルク}
・速度方向の逆を向く摩擦力の係数 k[t] にある Cos[t] の項は前後非対称を示す。
・進行方向の速度にy成分u_yを持たせると,その逆方向の摩擦力が働く。
1.羊頭狗肉 2.鶏鳴狗盗 3.鶏口牛後 4.沈魚落雁 5.窮鼠噛猫
6.烏兎匆匆 7.籠鳥檻猿 8.鶏群一鶴 9.鱸膾蓴羮 10.鯨飲馬食
6.烏兎匆匆 7.籠鳥檻猿 8.鶏群一鶴 9.鱸膾蓴羮 10.鯨飲馬食
0 件のコメント:
コメントを投稿