ラベル 技術 の投稿を表示しています。 すべての投稿を表示
ラベル 技術 の投稿を表示しています。 すべての投稿を表示

2021年3月11日木曜日

被写界深度

 被写界深度(Depth of Field)について,良くわかっていなかったので調べてみた。単なる幾何光学の練習問題だったので,大学入試問題に使えるかもしれない。

カメラのレンズ系を焦点距離 $f$ の1枚の薄い凸レンズで近似する。レンズの中心を原点Oとする。レンズの回転対称軸を $x$ 軸にとってカメラの撮像素子方向を正にとる。原点から $x$ 軸上の撮影対象までの距離を $b$,撮影対象が結像する撮像素子面までの距離を $a$ とする。このとき,次の関係が成り立つ。

\begin{equation} \dfrac{1}{a}+\dfrac{1}{b} = \dfrac{1}{f} \end{equation}

ところで,撮影対象の前後から出た光は,撮像素子面では厳密には結像しないが,実際にはセンサーの画素サイズ分の誤差  $\varepsilon$ が許容される。撮像素子面上で,フルサイズセンサー(35mm)なら $\varepsilon = 1/30$ mm,APS-Cやマイクロフォーサーズなら $\varepsilon = 1/60$ mm の範囲は結像したものとみなすことができる。このとき $x$ 軸上では,焦点深度 $\delta = {\rm F} \varepsilon$ の許容幅があることになる。ただし絞り値(F値)は F= 焦点距離/有効口径である。

そこで,$a_{\pm}=a \pm \delta$ を結像位置とする,撮影対象の $x$ 軸上の点を $b_{\mp}$ と表すと,次式が成り立つ。

\begin{equation} \begin{aligned} \dfrac{1}{a_{-}} + \dfrac{1}{b_{+}} = \dfrac{1}{f} \\  \dfrac{1}{a_{+}} + \dfrac{1}{b_{-}} =  \dfrac{1}{f} \end{aligned} \end{equation}

(1)(2)式から $f$ を消去すると次式が得られる。

\begin{equation} \begin{aligned} \dfrac{1}{b_{+}} - \dfrac{1}{b} = \dfrac{1}{a} - \dfrac{1}{a_{-}} \\   \dfrac{1}{b_{-}} - \dfrac{1}{b} = - \dfrac{1}{a_{+}} + \dfrac{1}{a} \end{aligned} \end{equation}

ここで,$a \gg \delta$ と近似し,(1)式を用いて,$\dfrac{1}{a} = \dfrac{b-f}{bf}$ とすると,

\begin{equation} \dfrac{1}{b_{\pm}} = \dfrac{1}{b} \mp \dfrac{\delta}{a^2} = \dfrac{1}{b} \mp \delta \bigl( \dfrac{b-f}{bf} \bigr)^2 \end{equation}

これから,$b_{\pm}$ は次のように求まる。最後の近似は,$b \gg f$とした場合である。

\begin{equation} \dfrac{b_{\pm}}{b} = \dfrac{1}{1 \mp \dfrac{\delta}{b} \bigl( \dfrac{b-f}{f} \bigr)^2 } \sim  \dfrac{1}{1 \mp \delta b / f^2 }  = \dfrac{1}{1 \mp {\rm F} \varepsilon b / f^2 }  \end{equation}

これによって,対象物が撮像素子面で結像することのできる領域とF値の関係がわかる。なお,$f = 50$ mm ,$b = 10$ m, $\varepsilon = 1/60$ mm,F=4とすると,$ {\rm F} \varepsilon b / f^2 = 0.27$となることから,$b_{-}= 7.9$ m,$b_{+}= 13.7$mとなり,手前側には2.1 m 奥側には3.7 m の範囲で合焦する。

図 被写界深度の説明図


2021年3月10日水曜日

F値・シャッター速度・ISO感度

 カメラが趣味ではないので,その技術的な基礎知識もほとんどなかった。最近,YouTubeに浸かっているので,耳学問のやや怪しくて不正確な知識が蓄積してきた。

F値は,焦点距離を有効口径で割ったものであり,この値が小さい方が明るいということはわかっていたが,その基準は人間の眼らしい。F値はこの基準値から√2倍の系列で慣用的な値が定まっている。つまり,F=1.4, 2.0, 2.8, 4.0, 5.6, 8.0, 11, 16, 22 などである。F値が一段階大きくなると,有効口径が1/√2になるので,面積は半分になるため,受光部に到達する光量も半分になって暗くなる。なお,F値が大きいと被写界深度が狭くなり,ボケの範囲が大きくなる。

シャッター速度は,受光部を光に暴露する時間であり,1, 2, 4, 8, 15, 30, 60, 125, 250, 500, 1000 (/秒)などとなっている。本来はこれも2の倍数の系列であるため,1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 (/秒)となるはずだが,歴史的な経緯で,上記の値が用いられているようだ。シャッター速度が2倍になれば,受光部に到達する光量は半分になって暗くなる。なお,シャッター速度が60/秒以下のように遅くなれば,ブレが目立つことになる。

ISO感度は,もともとはフィルムの感度であり,普段遣いのカメラではISO100(ASA100とよんでいた記憶があるけれど)のフィルムを使っていた。いまでは,受光部のMOSセンサーの増幅感度を表すものであり,100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600 などと,これも2の倍数の系列で感度を指定している。ISO感度が倍になれば,受光量が半分でも同じ明るさで記録される。ただし,ISO感度が高くなるということは,少ない光を電気的に増幅するわけだから,ノイズが増えることになる。

ISO感度を固定した場合,シャッター速度とF値の自乗の積が一定の組が同じ明るさを与えることになる。

この過程で,マイクロフォーサーズは4/3型センサー(フォーサーズ)のミラーレスの規格であって,レンズのマウント規格もフォーサーズの一眼レフとは異なっているということを学んだ。

2021年3月4日木曜日

要求要件

コンパクトデジカメの要求要件を考えてみた。たぶん,CANONの PowerShot G7X MarkIII が一番近いかもしれない。質量は電池込みで304gだ。

撮像素子のサイズは1型,画素数は2000万くらいである。レンズは,35mmフィルム換算の焦点距離が24mm-100mm(実際は8.8mm-36.8mm)で開放 F 値が1.8-2.8 である。ズーム倍率の4.2とは100/24のことだろうか。焦点距離の比率が,フルサイズと1型のセンサー対角長の比率43.2/15.9=2.72ということかな。などなど基本知識がないので,埋もれている知識を発見しつつ解読している。F値はレンズの焦点距離を有効口径で割ったものなので,24mmの広角端では,8.8/x=1.8より有効口径が4.89mm,100mmの望遠端では,36.8/x=2.8より有効口径が13.1mmということか?よくわからない。絞りはF11までとあるので,有効口径が0.80mm〜3.34mmまで絞れるということか。

ファインダーがなくて3.0型TFT液晶モニター・タッチパネルは上に180度下に45度傾く。これで十分。バリアングルというのはもっと自由度が高いものを指すのかもしれない。HDMI端子,外部マイク端子があって,外部電源からの給電はUSB電源アタプタを使えば可能である。HDMIではどの状態のときに何が出力されるかは押さえておく必要がある。ストロボは必要ないような気もするが,iPhoneでもついているくらいなのでいいのかも。NDフィルターもついている。これは有り難いのかもしれない。

データタイプがMP4のところがよいと思った。SONYやLUMIXでは,なんだか別の独自フォーマットなのである。しかし,iMovieをみるとたいていのデジタルカメラのフォーマットには対応しているので,これはこれで問題ないのかもしれない。WifiとBluetoohにも対応しているがどこまで意味があるのかはよくわからない。

YouTubeをみるとPS G7X M3のオートフォーカスの精度やスピードがSONYのRX100M7などに比べてかなり劣るとされていた。ただし,2019年の10月のファームウェアアップデートによってこれはほぼ解消されているようだ。SONYは他の機種も含めAFでは非常に定評がある。ただし,メニューなどのユーザーインターフェイスはぼろくそにいわれている。これは,LUMIXの方がましらしい。CANONがどうかはわからない。

ということで,もう少し望遠性能があってもよいけれど,とりあえずはこれで要求要件が概ね満たされているようにも思う。なお,対抗機種のRX100M7はPS G7XM3の1.5倍以上の価格である。

2021年3月3日水曜日

撮像素子

 YouTubeをみていると,Vlog 撮影のためのカメラの話題に事欠かない。そこでいつの間にか門前の小僧状態になりつつある。ただ,自分はカメラ沼にははまらないと思う。散財系の人々のようにお金が循環しないのでそもそも無理なのだ。

それでもVloggerになってみようかと思わないこともない。SONYのZV-1がVLOGCAMとして宣伝されているので,いろいろ調べてみると微妙に不満な点が目立つ。そのため,LUMIXはどうか,CANONではなどとなり,コンパクトなミラーレス1眼までいく。しかしそれでは携帯性に欠けるということになってぐるぐる回って切りがない。

とりあえず,撮像素子(CCDセンサーではなくMOSセンサー)について少し学んだのでまとめておく。以下のうち,フルサイズとAPS-Cと4/3(フォーサーズ)がミラーレス1眼レフカメラに対応する。なお,1型は対角1インチを表すわけではない。またAPS-CにはNIKON-SONYのものではなく,CANONの(22.3 × 14.9 26.8 )も存在しているらしい。

  名称   横mm縦mm 対角mm 横縦比

(1) フルサイズ 36.0 × 24.0 43.2  3:2

(2) APS-C   23.6 × 15.8 28.4  3:2

(3) 4/3型     17.3 × 13.0 21.6  4:3

(4) 1型     13.2 ×   8.8 15.9  3:2

(5) 1/1.7型      7.5 ×    5.6 9.36  4:3

(6) 1/2.3型   6.2 ×    4.6 7.72  4:3

(7) 1/3型      4.8 ×    3.6 6.00  4:3


2019年7月12日金曜日

Society 5.0

文部科学省の最近のペーパーはみな,Society 5.0というキーワードからはじまっている。なんだか気持ちが悪い。官僚があるキーワードを取り上げると,その傘下の利害団体は一斉にそのキーワードを使った申請書を大量生産し,そのキーワードがバズりだすことになる。そういう自分もさんざんそのような仕事をしてきた。Web2.0というタームを使って科研費を獲得し,チーム学校という言葉を駆使して大学設置審向けの書類を積み上げた。なんとも悲しくてむなしい話である。なので,人のことはいえない。

さて,日本政府のSociety 5.0は,狩猟採取社会を1.0,農耕牧畜社会を2.0,産業工業社会を3.0,情報化社会を4.0としての5.0である。当初は超スマート社会としていたが,Society 5.0と呼び習わすのが普通になってきた。第4次産業革命とも書いてある。第1次は蒸気機関+鉄道,第2次は内燃機関+車・航空機,第3次は半導体+コンピュータ・インターネット,そして第4次はAI・IoT+バイオ・ナノテクノロジーらしい。

経済産業省的な背景のもとに内閣府が作り出したと思われる。第五期科学技術基本計画(2016-2020)では,超スマート社会(Society 5.0)とある。また,総合科学技術・イノベーション会議が策定した統合イノベーション戦略2019では,Society 5.0が前面にでてきている。日本政府の政策ビジョンであるが,Wikipediaでは,日本語以外ではロシア語版のみ存在しており,英語版はない。一方,第4次産業革命ということばは,2016年のダボス会議から使われており,国際的にはこちらが通用している。Society 5.0 は日本ローカルなコンセプトであるが,産業革命というよりその結果として生ずる社会のほうに焦点を当てたということはそれなりに意味があるのかもしれない。

テイヤール・ド・シャルダンならば,叡智圏(ノウアスフィア)の段階にSociety2.0以降は含まれてしまう。アルビン・トフラーならば,第一の波:農業革命,第二の波:産業革命に対して,第三の波:情報革命(=脱産業社会)の第三波に包括されているものだ。ただ,それがこうして精密に分析されて行くのは現実に世界の相転移が見えはじめているからかもしれない。もう少し考えてみる。