惑星の楕円軌道についての復習の時間。
図:楕円の性質
図の左が,楕円の中心を原点とする$\ (X-Y)$座標系の表示である。長半径$a$の円を短半径$b$方向に$b/a$倍すると,$(X/a)^2+(Y/b)^2=1$という楕円が描かれる。このとき,縮小前の点への位置ベクトルが$X$軸となす角度を$\theta$として,楕円上の点の座標が$\ (X=a \cos \theta, Y= b \sin \theta)\ $となる。また,原点から種横転までの距離は$\ \sqrt{a^2-b^2}=ae$となる。ただし,離心率が$\ e=\sqrt{1-(b/a)^2}$と定義される。
図の右が,楕円の焦点を中心とする$\ (x-y)$座標系での表示である。原点から最も近い$x$軸方向の近地点までの距離を$r_{\rm pe}=a(1-e)$,最も遠い遠地点までの距離を$r_{\rm ap}=a(1+e)$とすると,$a=(r_{\rm ap}+r_{\rm pe})/2,\ b=\sqrt{r_{\rm ap} r_{\rm pe}}$である。また,楕円上の点への位置ベクトルは,その長さを$r$,$x$軸のなす角度を$\phi$として,$(x=r\cos\phi, y=r\sin\phi)$と表される。
ところで,$x = a \cos \theta - a e = r\cos\phi,\ y = b \sin \theta = r\sin\phi)$である。そこでこれらから,$\theta$を消去すれば,$r$と$\phi$の関係式が得られる。すなわち,$r=\sqrt{x^2+y^2} = a (1-e\cos\theta)$,$\tan \phi = \dfrac{y}{x} = \dfrac{\sqrt{1-e^2} \sin \theta}{\cos \theta - e}$
そこで,$\dfrac{1}{\cos^2\phi} = 1 + \tan^2\phi = \dfrac{(\cos \theta - e)^2 + (1-e^2)\sin^2 \theta}{(\cos \theta - e)^2}=\dfrac{(1-e\cos\theta)^2}{(\cos \theta - e)^2}$
$\therefore \dfrac{1}{\cos\phi} = \dfrac{1-e\cos\theta}{\cos \theta - e} = \dfrac{r}{a\cos \theta - a e} = \dfrac{r e}{a - r - a e^2} $
最終的に,$r = \dfrac{a(1-e^2)}{1 + e \cos \phi}$となる。
[1]季節による太陽高度・日出/日没時刻の変化(Scientific Doggie)
0 件のコメント:
コメントを投稿