2023年11月1日水曜日

積分(2)

積分(1)からの続き

昨日の積分は,$\displaystyle I = \int _{-\pi}^{\pi} \dfrac{R^2-a^2}{R^2+a^2-2 a R \cos\theta} d\theta$
であったが,これは直線電荷と鏡像電荷から来る項の和であった。前者だけをとりだすと,
$\displaystyle I = \int _{-\pi}^{\pi} \dfrac{R-a \cos\theta}{R^2+a^2-2 a R \cos\theta} d\theta$

これを変数変換$\ t=\tan \frac{\theta}{2}$によって有理関数の形に書き換えると,
$\displaystyle I = \int _{-\infty}^{\infty} \dfrac{R-a \frac{1-t^2}{1+t^2}}{R^2+a^2-2 a R \frac{1-t^2}{1+t^2}} \dfrac{2}{1+t^2} dt $
$\displaystyle = \int _{-\infty}^{\infty} \dfrac{R(1+t^2)-a (1-t^2)}{(R^2+a^2)(1+t^2) - 2 a R(1-t^2)} \dfrac{2}{1+t^2} dt $
$\displaystyle =\int _{-\infty}^{\infty} \dfrac{(R-a)+(R+a) t^2}{(R-a)^2+(R+a)^2 t^2} \dfrac{2}{1+t^2} dt $
$\displaystyle = \dfrac{2}{R-a} \int _{-\infty}^{\infty} \dfrac{1+\alpha t^2}{1+\alpha^2 t^2} \dfrac{1}{1+t^2} dt = \dfrac{2}{R-a} \int _{-\infty}^{\infty}\Bigl\{  \dfrac{A}{1+\alpha^2 t^2} +\dfrac{B}{1+t^2} \Bigr\}dt $ 
ここで,$A=\dfrac{\alpha}{\alpha+1}, B=\dfrac{1}{\alpha+1}, \alpha = \dfrac{R+a}{R-a} < 0$ とした。
したがって,
$\displaystyle I = \dfrac{2}{R-a} \dfrac{1}{\alpha+1} \int _{-\infty}^{\infty}\Bigl\{  \dfrac{\alpha}{1+\alpha^2 t^2} +\dfrac{1}{1+t^2} \Bigr\}dt $
$\displaystyle I = \dfrac{1}{2R}\Bigl\{ \int _{\infty}^{-\infty} \dfrac{ds}{1+s^2} + \int_{-\infty}^{\infty} \dfrac{dt}{1+t^2} \Bigr\}=0$

0 件のコメント: