2月02日 横井庄一帰国
2月03日 札幌オリンピック開幕
芥川龍之介が「蜘蛛の糸」を発表して百年。高二の秋の文化祭,クラスの仮装行列のテーマが 蜘蛛の糸だった。お釈迦様の極楽タワーの竹を近所から切り出し,地獄の焔と煙の絵を描いた。犍陀多に続いて蜘蛛の糸(登山部の赤いザイル)に群がる地獄の亡者だったころ。
2022年5月15日日曜日
沖縄返還50周年
2022年5月14日土曜日
仏滅の周期
トイレのカレンダーを見ていると,周期性のある仏滅の位置が今月末あたりでズレている。
六曜は,暦に記載される日時・方位などの吉凶、その日の運勢などの事項である暦注のひとつである。先勝(せんしょう)・友引(ともびき)・先負(せんぶ)・仏滅(ぶつめつ)・大安(たいあん)・赤口(しゃっこう)の六種がこの順に毎日繰り返す。
調べてみると,六曜の周期性の乱れは次のルールによる。旧暦の月の朔日が一月と七月は先勝,二月と八月は友引,三月と九月が先負,四月と十月が仏滅,五月と十一月が大安,六月と十二月が赤口と,あらかじめ定まった六曜が朔日に割り当てられており,これから順に並べていくことになる。そこで旧暦の月Mと日Dがわかれば,(M+D-2) mod 6 を計算しよう。この剰余の集合 { 0, 1, 2, 3, 4, 5 } に対して,先ほどの六曜の集合 {先勝, 友引, 先負, 仏滅, 大安, 赤口} を順番に対応させれば,各月各日の六曜が決まる。
今年の5月30日は旧暦の皐月朔日(5月1日)になるので,大安にセットされる。このため仏滅が,新暦の5/7−5/13−5/19/−5/25−5/31 という系列からずれて,6/4になったというわけだ。
あまり役に立たない豆知識シリーズ終了。
2022年5月13日金曜日
LDLコレステロール(1)
人間ドック(2)からの続き
以前から,中性脂肪やLDLコレステロール値にしばしば警告が出ていたが,あまり気にすることはなかった。ところが,今回はいよいよ,要治療領域まであと一歩という説明をドクターから直接受けたので早速以前の結果を見直してみた。
2022年5月12日木曜日
人間ドック(2)
人間ドック(1)からの続き
昨日は,天理市立メディカルセンターの人間ドック健診日だった。
天理市の国民健康保険加入者に対する人間ドック補助制度がある,今年から条件に該当することになったので,早速申し込んでいた。メディカルセンターの受付時間は8:30から8:45までで,10分前につくと6番目だ。大手前病院では,家を6:00前に出て,7:15に病院に到着してやっと6番目前後だったので,えらい違いである。
天理市立メディカルセンターは,高井病院の福祉医療法人である高清会が運営していて,設備も比較的新しく普通の病院とあまりかわらない。健診を受けている人数がそもそも少ないので対応はよい。タニタの最新式体重計では,体脂肪率だけでなく身体各部の脂肪量や筋肉量まで算出してくれる。脂肪量は平均値なのだが,筋肉量が平均より2段階下である。どおりで懸垂ができなくなるわけだ。
気になった点は,(1) 眼底検査がなかなかうまくいかず,3回取り直した。これは私のせいなのか?(2) 聴力検査はかなりアバウトなのであった。(3) 胃X線(バリウム)は検査技師の方はとても丁寧で親切だったけれど,発泡剤を補助液なしにそのまま口に入れ,大量のバリウムで直接流し込む方式には閉口した。診断台で身体を支えるのもなかなか困難になってきたので,来年は胃カメラかな。
問診は,超音波検査を担当していたお医者さんに血液検査のデータを見ながら丁寧に説明してもらった。LDLコレステロールが170mg/dLと後一歩で要治療の180mg/dLに達するということで脅された。さっそく看護師の保健指導をうけつつ3ヶ月後の再検査を申し込むことに。
[1]バックス発泡顆粒(「透視開始に際して、造影剤投与開始直前あるいは投与開始後、年齢、胃内容積の個人差、造影の体位に応じて、約100~400mLの炭酸ガスの 発生量に相当する量を、少量の水または、造影剤と共に経口投与する」なので,補助液なしでもかまわないらしい。)
2022年5月11日水曜日
理想気体のエントロピー
(1)熱力学的なエントロピー$S(U,V)$を,$dS=\frac{d'Q}{T}\ $で定義する。これを熱力学第一法則の中に埋め込むと$\ dU=TdS-pdV$,すなわち,$dS=\frac{dU}{T}+\frac{p dV}{T}$ となる。
ここに,理想気体の状態方程式$\ pV = nRT = N k_B T\ $と,単原子分子気体の内部エネルギーの表式,$U = n C_v T = n \frac{3}{2} R T = N \frac{3}{2} k_B T\ $ を代入する。
$dS= N k_B \Bigl( \frac{3}{2} \frac{dT}{T} + \frac{dV}{V} \Bigr )\quad \therefore \int dS = N k_B \Bigl( \frac{3}{2} \int \frac{dT}{T} + \int \frac{dV}{V} \Bigr )$
$S = S_0 + N k_B \Bigl( \frac{3}{2} \log \frac{T}{T_0} + \log \frac{V}{V_0} \Bigr) = S_0 + N k_B \log \frac{T^{3/2}V}{T_0^{3/2}V_0}$
(2)一方,統計力学において,自由粒子の小正準集団のエントロピーは,ボルツマンの原理から,$S = k_B \log W(E) = k_B \log \frac{\partial}{\partial E} \Omega_0(E)\ \delta E$となる。
質量$m$の$N$粒子系のエネルギー$E$までの状態数$\ \Omega_0(E)\ $は,$N$粒子系の$6N$次元の位相空間の体積を$6N$次元細胞の体積$\ h^{3N}\ $と同一粒子が区別できないことによる因子$N!$で割ったものになり,運動量空間での半径$\ \sqrt{2mE}\ $の$3N$次元超球の体積の式を使うと,
$\displaystyle \Omega_0(E) = \frac{1}{h^{3N} N!} \int d{\bm q} \int _{\Sigma p_i^2/2m < E} d{\bm p} = \frac{V^N (2\pi m E)^{3/2}}{h^{3N}\Gamma(3N/2+1)}$
$ W(E) = \frac{3N}{2} \frac{V^N}{N! (3N/2)!} \Bigl( \frac{2\pi m E}{h^2} \Bigr)^{3/2} \frac{\delta E}{E} = \frac{3N}{2} \Bigl(\frac{V}{N}\Bigr) ^N\Bigl( \frac{2\pi m E}{3N/2} \Bigr)^{3N/2} e^{5N/2} \frac{\delta E}{E}$
$\therefore S(E) = k_B \log W(E) = N k_b \Bigl\{\frac{3}{2}\log \Bigl( \frac{4\pi m E}{3 h^2 N}\Bigr) + \log \frac{V}{N} +\frac{5}{2} \Bigr\}$
$=N k_B \log \frac{(2\pi m k_B T)^{3/2} V e^{5/2}}{N h^3} $
ここで,$\frac{1}{T} = \frac{\partial S}{\partial U}= \frac{\partial S}{\partial E} = \frac{3 N k_B }{2 E}$より,$\frac{E}{N}=\frac{3}{2}k_B T$を用いた。$S(E)$の式の$\log$の中身は無次元であり,$V/N$があるので,全体として示量変数ではないことが保証されている。
理想気体の熱力学的エントロピーと統計力学的エントロピーは,ともに $N k_B \log T^{3/2}V + const. $の形をしているが,定数部分まで含めて同じかどうかがよく理解できていない。
2022年5月10日火曜日
摩擦のあるカルノーサイクル(3)
摩擦のあるカルノーサイクル(2)からの続き
摩擦のあるカルノーサイクルでクラウジウスの不等式を説明するためには,前回のように$W'$のなかの摩擦力による仕事$\delta w$として表現するかわりに摩擦力で生じた熱$\delta_{\rm q}=-\delta w < 0$として扱うこともできる。
仕事として表現すると:等温過程 A$\rightarrow$B:($Q_{\rm H}>0, \quad \delta w_{\rm AB}>0$)
$W'_{\rm AB}=\int_{V_{\rm A}}^{V_{\rm B}} pdV -\delta w_{\rm AB}=W_{\rm AB} -\delta w_{\rm AB}=Q'_{\rm H}$
等温過程 C$\rightarrow$D:($Q_{\rm L}<0, \quad \delta w_{\rm DC}>0$)
$W'_{\rm CD}=\int_{V_{\rm C}}^{V_{\rm D}} pdV -\delta w_{\rm DC}=W_{\rm CD} -\delta w_{\rm DC}= Q'_{\rm L}$
熱として表現すると:
等温過程 A$\rightarrow$B:($Q_{\rm H}>0, \quad \delta q_{\rm H}<0$)
$W'_{\rm AB}=\int_{V_{\rm A}}^{V_{\rm B}} pdV + \delta q_{\rm H} = Q_{\rm H} +\delta q_{\rm H} = Q'_{\rm H}$
等温過程 C$\rightarrow$D:($Q_{\rm L}<0, \quad \delta q_{\rm L} < 0$)
$W'_{\rm CD}=\int_{V_{\rm C}}^{V_{\rm D}} pdV + \delta q_{\rm L} = Q_{\rm L} + \delta q_{\rm L}= Q'_{\rm L}$
カルノーサイクルにおいては,系に入る熱量を温度でわった,エントロピーに対応する状態量$\frac{Q}{T}$の和が保存していた。すなわち,$\dfrac{Q_{\rm H}}{T_{\rm H}}+\dfrac{Q_{\rm L}}{T_{\rm L}} = n R \log \dfrac{V_{\rm B}}{V_{\rm A}} + n R \log \dfrac{V_{\rm D}}{V_{\rm C}} = 0$
一方,摩擦のあるカルノーサイクルで,出入りする熱量に対して,温度で割ったものの和を考えると,$\dfrac{Q'_{\rm H}}{T_{\rm H}}+\dfrac{Q'_{\rm L}}{T_{\rm L}}=\dfrac{Q_{\rm H}+\delta q_{\rm H}}{T_{\rm H}}+\dfrac{Q_{\rm L}+\delta q_{\rm L}}{T_{\rm L}} = \dfrac{\delta q_{\rm H}}{T_{\rm H}}+\dfrac{\delta q_{\rm L}}{T_{\rm L}} \le 0$
これを一般化すると,可逆過程だけのサイクルについては $\displaystyle{ \oint \dfrac{d'Q}{T_{\rm ex}} = 0}$,不可逆過程を含むサイクルについては,$\displaystyle{\oint \dfrac{d'Q}{T_{\rm ex}} \le 0}$,ここで,$d'Q$は系が受け取る熱量で,$T_{\rm ex}$はその熱量を与えた熱源の温度である。これがクラウジウスの不等式。
2022年5月9日月曜日
準静的過程がわからない
エントロピーがわからないからの続き
熱力学の入門的教科書を手元に並べて呻吟している。
そういえば,教養課程で物理学科の専門科目として大学1年のときにクラス担任の国富信彦先生が担当したのが「物理学要論?」だった(科目名も忘れてしまった)。そこで,最初につまづいたのが応力テンソルと準静的過程だった。熱力学の初歩のところでは,覆水盆に返らずの話をしながら準静的過程の説明があったので,これは可逆過程なのか不可逆過程なのかどうなっているの?と混乱したのだった。
さて,並べているやさしい教科書は以下のとおり2022年5月8日日曜日
摩擦のあるカルノーサイクル(2)
摩擦のあるカルノーサイクル(1)からの続き
「エントロピーについての理解を図るため,不可逆過程の具体的な例を構成したい。そのためカルノーサイクルの等温過程においてのみピストンに散逸のある抵抗力=摩擦力が働くモデルを考える。この摩擦力は,ピス トンの運動方向と逆向きに作用し,その仕事はピストンに熱として放出され,カルノーサイクル の作業物質である理想気体には影響を及ぼさないものとする。この考察において作業物質の系=理想気体がする仕事は,ピストンを用いて測定されることに留意する。すなわち,ピストンに働く力の総和とピストンの変位の積によって作業物質系が「する」仕事や「される」仕事(=負の「する」仕事)が定義される」
ということで,前書きをかいて計算をはじめてみたもののなかなか難渋するのであった。
2022年5月7日土曜日
摩擦のあるカルノーサイクル(1)
エントロピーがわからないからの続き
熱力学の第二法則と仮に導入したエントロピーの違いを明らかにしたい。普通の教科書ではクラウジウスの原理やトムソンの原理によるわけだが,そのためには,不可逆過程の考察が必要となる。その一番簡単な例は,力学でもなじみのある摩擦現象だと思う。
摩擦現象は力学的に細かく詰めて考えると何だか複雑で面倒なことになるが,とりあえず,摩擦現象は運動や仕事が熱に変換されて,力学的エネルギーが熱エネルギーとして環境中に散逸する過程だと考えることにする。環境中の熱エネルギーが直接集まってきて力学的エネルギーになるような現象は,巨視的には観察されないので,摩擦現象は不可逆過程である。
そこで,これまで練習してきたカルノーサイクルに摩擦を導入すれば,理解がしやすいのではないかと考えた。どの教科書をみてもそんな具体的な議論はされていない。クラウジウスやトムソンにしたがって,より抽象的な熱機関(可逆機関,不可逆機関)の組み合わせでの議論が進んでいくわけだ。
というわけで,より具体的な摩擦のあるカルノーサイクルを構成してみることに(続く)。
2022年5月6日金曜日
エントロピーがわからない
カルノーサイクルからの続き
エントロピーについての熱力学的な導入の論理がすっきりしないと,統計力学の授業が進めにくい。もちろん天下りでボルツマンの原理を導入してしまえばあとは計算だけになる。でも,それでは熱力学との関係もうやむやになりそうだ。
熱力学の第一法則で,$dU=d'Q+d'W=d'Q-pdV$のd'Qの部分も状態量の組み合わせで書けるとありがたい。$p$は示強変数,$V$は示量変数であり,その積がエネルギーの次元を持つ示量変数になっている。使える状態量として示強変数である温度$T$があるので,これに相補的な示量変数で温度との積がエネルギーの次元を持つ状態量をエントロピー$S$として導入して,$d'Q=TdS$とおくことにする。
もしこれができれば,状態量空間中の点を$A$,基準点を$O$として,$S(A)=\int_O^A \frac{d'Q}{T}$は状態量になる。この積分が状態量であるということは,平衡状態Aのみに依存して積分の経路にはよらないはずである。
そこで,カルノーサイクルの断熱過程で実際にこの量を計算してみれば,断熱過程ではエントロピー$S$が一定になる。つまり,カルノーサイクルというのは,エントロピーと温度を2軸とする状態図において,等温線と等エントロピー線に囲まれた長方形領域になる。
ここまでの議論は,準静的過程=可逆過程について成り立つ話である。不可逆過程だとどうなるのか。肝腎の熱力学の第二法則との関係がついていないわけなのでさらなる検討が必要だ。
2022年5月5日木曜日
クローニッヒ・ペニーモデル(4)
クローニッヒ・ペニーモデル(3)からの続き
これまでの結果を用いて,具体的な数値を代入したグラフを作成する。与えられた$k_n$の値に依存して,$-1 \le \cos(k_n a) \le 1$の条件から,1電子のエネルギー$E$がとりうる範囲についての条件が定まる。このとき,電子が取り得るエネルギー領域を許容帯(allowed band),取りえないエネルギー領域を禁制帯(forbidden band)とよぶ。相互作用のない電子の多粒子系では,これらの離散化された許容帯に電子が充填されることになる。
Mathematicaによって,この様子を確認してみれば次のようになる。
a = 2; b = 0.04; hc = 1973; m = 1.022*10^6; p = 2*1.05017;
v = 2*hc^2*p/(1.022*10^6*a*b)
(hc)^2/(m a^2)
200.001
0.952233
\[Alpha][e_] := Sqrt[m*e]*(a - b)/hc;
\[Beta][e_] := Sqrt[m*(v - e)]*b/hc;
\[Gamma][e_] := Sqrt[m*e]*a/hc;
X[e_] := Cos[\[Alpha][e]] Cosh[\[Beta][ e]] + ((\[Beta][e]/b)^2 - (\[Alpha][e]/(a - b))^2)/(2*\[Alpha][ e]/(a - b)*\[Beta][e]/b) Sin[\[Alpha][e]] Sinh[\[Beta][e]]
Plot[{ X[e], 1, (Cos[\[Gamma][e]] + p*Sin[\[Gamma][e]]/\[Gamma][e]), -1, Cos[\[Gamma][e]]}, {e, 0, 200}, PlotRange -> {-1.5, 3.5}, PlotStyle -> {Red, Gray, Blue, Gray, Orange}]
Table[FindRoot[X[e] == 1, {e, (hc a n )^2/(2 m) }], {n, 1, 5}]
{{e -> 2.95059}, {e -> 37.6031}, {e -> 45.1073}, {e -> 150.412}, {e -> 158.267}}
Table[ FindRoot[X[e] == -1, {e, 0.9*(hc a n )^2/(2 m) }], {n, 1, 6}]
{{e -> 9.40077}, {e -> 16.0036}, {e -> 84.6069}, {e -> 92.3771}, {e -> 242.886}, {e -> 242.886 + 0. I}}
d0 = Plot[{10^6 (e - 2.95059), 10^6 (e - 9.40077), 10^6 (e - 16.0036), 10^6 (e - 37.6031), 10^6 (e - 45.1073), 10^6 (e - 84.6069), 10^6 (e - 92.3771), 10^6 (e - 150.421), 10^6 (e - 158.267)}, {e, 0, (4 Pi)^2}, PlotStyle -> Table[{Gray, Dotted}, 9], PlotRange -> {0, 13}];
f0 = Plot[{0, Pi, 2 Pi, 3 Pi, 4 Pi}, {e, 0, (4 Pi)^2}, PlotStyle -> Table[{Green, Dotted}, 5]];
g0 = Plot[\[Gamma][e], {e, 0, (4 Pi)^2}, PlotStyle -> {Orange, Dashed}];
g1 = Plot[ArcCos[X[e]], {e, 0, Pi^2}];
g2 = Plot[2 Pi - ArcCos[X[e]], {e, Pi^2, (2 Pi)^2}];
g3 = Plot[2 Pi + ArcCos[X[e]], {e, (2 Pi)^2, .98 (3 Pi)^2}];
g4 = Plot[4 Pi - ArcCos[X[e]], {e, .98 (3 Pi)^2, .95 (4 Pi)^2}];
Show[{d0, f0, g0, g1, g2, g3, g4}, PlotRange -> {-1, 15}]
2022年5月4日水曜日
クローニッヒ・ペニーモデル(3)
クローニッヒ・ペニーモデル(2)からの続き
1次元ポテンシャルに周期性があるときに,ブロッホの定理から$\psi(x)=e^{ikx}\varphi(x)$と表わせて,$\psi(x+a)=e^{ik(x+a)}\varphi(x+a)=e^{ika} e^{ikx}\varphi(x)=e^{ika}\psi(x)$が成り立つ。このときの波動関数は運動量演算子の固有状態なのだろうか?違います。前回やったように,このハミルトニアンは有限の並進操作に対して不変だけれど,運動量に対応する無限小並進操作については不変ではないから。
ところで,この長さ$L=N a$の1次元周期ポテンシャルモデルの両端を同一視する周期境界条件をつけると($N$はポテンシャルステップの数=原子数,$a$はポテンシャルの周期=原子間隔),$\psi(L)=\psi(0) \quad \psi(L)=e^{i k a \cdot N}\psi(0) \quad \therefore e^{i k a N}=1$
これから$k$に対する条件,$k_n = \frac{2\pi n}{a N}\quad (n=0,\pm 1, \pm 2 \cdots)\ $が得られる。$k_n$は量子数 $n$ で特徴づけられるこの状態の波数という意味をもつ。
前回得られた境界条件は,系のエネルギーを$E$,ポテンシャルの深さと幅を$V_0, b$,ポテンシャル周期を$a$として,$p=\frac{\sqrt{2mE}}{\hbar}$,$q=\frac{\sqrt{2m(V_0-E)}}{\hbar}$とおくと,$ \cos k a = \cos p(a-b) \cosh qb + \frac{q^2-p^2}{2 p q} \sin p(a-b) \sinh qb $ である。これは,与えられた$k = k_n$に対して,系のエネルギーを決定する式になる。
(1) $b \rightarrow 0$ の極限では$p_n=k_n$となり,$E_n=\frac{\hbar k_n^2}{2m} = \frac{2 \hbar^2 \pi^2 n^2}{m a^2 N^2}$となる。
(2) 次に,$V_0 b$を一定に保ちながら,$b \rightarrow 0,\ V_0 \rightarrow \infty$とするδ関数型極限を考える。このとき,$\sinh qb \rightarrow qb$であり,右辺第2項は,$\frac{(q^2-p^2)ba}{2} \frac{\sin p(a-b)}{p a} $となる。最終的に,$ \cos k a = \cos p a + \frac{m c^2 V_0 b a}{(\hbar c)^2} \frac{\sin pa}{pa}$ という近似式が得られる。
2022年5月3日火曜日
日本國憲法前文
憲法記念日だが,ウクライナへのロシアの侵略戦争が続いている。先の見えない円安で疲弊した我々の心の隙に,右翼デマゴーグ達の好戦的なイデオロギーが陽に陰に染み込んでいく。こんなときは,日本國憲法の前文を写経して心を鎮めるしかない。若者は「最高法規の意志~ 憲法の本質と改正の動向 ~」をチラ見する方が役に立つかも。
日本國憲法
日本國民は、正當に選擧された國會における代表者を通じて行動し、われらとわれらの子孫のために、諸國民との協和による成果と、わが國全土にわたつて自由のもたらす惠澤を確保し、政府の行爲によつて再び戰箏の惨禍が起ることのないやうにすることを決意し、ここに主權が國民に存することを宣言し、この憲法を確定する。そもそも國政は、國民の嚴肅な信託によるものであつて、その權威は國民に由來し、その權力は國民の代表者がこれを行使し、その福利は國民がこれを享受する。これは人類普遍の原理であり、この憲法は、かかる原理に基くものである。われらは、これに反する一切の憲法、法令及び詔勅を排除する。
日本國民は、恒久の平和を念願し、人間相互の關係を支配する崇高な理想を深く自覺するのであつて、平和を愛する諸國民の公正と信義に信頼して、われらの安全と生存を保持しようと決意した。われらは、平和を維持し、專制と隷從、壓迫と偏狹を地上から永遠に除去しようと努めてゐる國際社會において、名譽ある地位を占めたいと思ふ。われらは、全世界の國民が、ひとしく恐怖と缺乏から免かれ、平和のうちに生存する權利を有することを確認する。
われらは、いづれの國家も、自國のことのみに專念して他國を無視してはならないのであつて、政治道徳の法則は、普遍的なものであり、この法則に從ふことは、自國の主權を維持し、他國と對等關係に立たうとする各國の責務であると信ずる。
日本國民は、國家の名譽にかけ、全力をあげてこの崇高な理想と目的を達成することを誓ふ。
2022年5月2日月曜日
クローニッヒ・ペニーモデル(2)
クローニッヒ・ペニーモデル(1)からの続き
前回,周期ポテンシャル中で正のエネルギーを持った電子の運動について考えた。自由電子とはいえ,金属中に束縛されているのだからポテンシャルの上端に対して負のエネルギーを持った電子を考えなければならなかった。
上智大学名誉教授の清水清孝さん(元有馬研)が,電子情報通信学会の知識ベース知識の森の12群5編量子力学・電子物理・相対論を執筆していて,そこにバンド理論入門についての話もあった。
そこで,前回のポテンシャルの符号を $-V_0 \rightarrow V_0$としたモデルで$0<E<V_0$の場合を考える。すなわち,ポテンシャルは,つぎの形を繰り返したものになる。領域 Ⅰ:$V(x) = \ 0 \ \cdots \ (0 < x < a-b)\ $
領域 Ⅱ:$V(x) = V_0 \ \cdots \ (-b < x < 0)$
$i p(A-A')=q(B-B')$
$A\ e^{ip(a-b)}+A'e^{-ip(a-b)}=(B\ e^{-qb}+B'e^{qb})e^{ika}$
$i pA\ e^{ip(a-b)}-i pA'e^{-ip(a-b)}=(qB\ e^{-qb}-qB'e^{qb})e^{ika}$
2022年5月1日日曜日
クローニッヒ・ペニーモデル(1)
クローニッヒ・ペニーモデルは周期性を持った1次元井戸型ポテンシャルのモデルであり,結晶のバンド構造の定性的な特徴を説明することができる。
波動関数とその導関数が,領域Iと領域IIの境界で連続であるという条件を書く。
$\psi_{\rm I}(0) = \psi_{\rm II}(0);\ \psi_{\rm I}'(0) = \psi_{\rm II}'(0)$,$\psi_{\rm I}(a-b) = e^{i k a }\psi_{\rm II}(-b);\ \psi_{\rm I}'(a-b) = e^{i k a }\psi_{\rm II}'(-b)$
$p(A-A')=q(B-B')$
$A\ e^{ip(a-b)}+A'e^{-ip(a-b)}=B\ e^{-iqb+ika}+B'e^{iqb+ika}$
$pA\ e^{ip(a-b)}-pA'e^{-ip(a-b)}=qB\ e^{-iqb+ika}-qB'e^{iqb+ika}$
2022年4月30日土曜日
1次元周期ポテンシャル
月曜日の予習シリーズ。
1次元の周期ポテンシャル中を運動する粒子の問題を考える。
(1) 並進演算子:$\psi(x+\delta x) \approx \psi(x) + \delta x \cdot \frac{d}{dx} \psi(x) = (1 + i \ \delta x \cdot p_x / \hbar ) \psi(x)$から,運動量演算子は微小並進操作と関係している。そこで,ユニタリ演算子,$U(a) = \exp( i\ a \cdot p_x / \hbar )$が,有限の並進操作を行う演算子となる。つまり,$U(a) \psi (x) = \sum_{k=0}^\infty \frac{1}{k!} (\frac{i\ a \cdot p_x}{\hbar})^k \psi(x) = \sum_{k=0}^\infty \frac{a^k}{k!} (\frac{d}{dx})^k \psi(x) = \psi(x+a)$
(2) 1次元周期ポテンシャル:1次元のポテンシャル$V(x)$中を運動する質量$m$の粒子に対する定常状態のシュレーディンガー方程式は,$H \psi(x) = \{ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x) \}\psi(x) = E \psi(x)$ である。このポテンシャルが周期$a$を持つとき,すなわち,$V(x+a)=V(x)$のとき,$U(a)V(x)\psi(x)=V(x+a)\psi(x+a)=V(x) U(a)\psi(x)$なので,$[U(a), V(x)]=0$,また,$U(a)$は演算子$p$から構成されるので,$[U(a),\frac{p^2}{2m}]=0$である。
(3) 固有関数の並進対称性:したがって,$[U(a),H]=$であり,$H$の固有関数は,$U(a)$との同時固有関数(絶対値1の複素固有値)になるから,$U(a) \psi(x) = \exp(ika)\psi(x)$とかける。つまり,$\psi(x+a) = \exp(ika) \psi(x)$であり,$\psi(x)=\exp(ikx) \phi(x)$とすると,$\phi(x+a)=\phi(x)$を満足することになる。すなわち,ブロッホの定理「周期ポテンシャルの固有関数は同じ周期性を持つ関数と平面波の積となる」が成り立つ。
うーん,ここからクローニッヒ=ペニーモデルに持ち込むにはちょっと覚悟が必要だということがわかったので,宿題にする。
2022年4月29日金曜日
フェルミ分布
月曜の授業の予習シリーズ。
位相空間($\mu$空間)の細胞に含まれる状態数は,プランク定数を$h$として,$dn=\frac{1}{h^3} dx dy dz dp_x dp_y dp_z$である。電子のようなスピン1/2のフェルミ粒子を考えると,位相空間の各状態にスピンアップとダウンの2状態がともなう。そこで,単位体積をとって,運動量空間細胞に含まれる状態数は $dn' = \frac{2}{V_0} \int_V dn = \frac{2}{h^3}dp_x dp_y dp_z = \frac{8 \pi}{h^3} p^2 dp$となる。ただし,$p^2=p_x^2+p_y^2+p_z^2$。粒子の質量を$m$,エネルギーを$w=\frac{p^2}{2m},\ p=\sqrt{2mw}$とすると,$dw=\frac{p}{m}dp\ $より,$dn'=\frac{8 \pi}{h^3} \sqrt{2m^3 w}\ dw\ $となる。
この系のフェルミ分布関数は,$f(w_i)=[\exp(\frac{w_i - w_F}{kT}) + 1]^{-1}$である。ただし,$k$はボルツマン定数,$T$は系の絶対温度,$w_F$はフェルミ準位を表わす。これから,エネルギーの分布関数は,$N(w)dw= \frac{8 \pi}{h^3} \sqrt{2m^3 w} [\exp(\frac{w - w_F}{kT}) + 1]^{-1} dw$となる。これを速度空間の表式にひきもどして,$v_x,v_y$で積分すると$\ v_z$の分布関数が得られる。
そこで,次の関係式に留意する。$\int_{-\infty}^{\infty}dv_x\int_{-\infty}^{\infty}dv_y\int_{-\infty}^{\infty}dv_z f(v_x,v_y,v_z) = 4\pi \int_{0}^{\infty} f(v^2)\ v^2 dv $
$w=\frac{m}{2}v^2$,$dw = m v\ dv$なので
$4\pi \int_{0}^{\infty}f(v^2) v^2 dv = 4\pi \int_{0}^{\infty} f(v^2) \frac{v}{m} dw = \int_{0}^{\infty} 4\pi f(v^2) \sqrt{\frac{2w}{m^3}} dw$
そこで,$N(w)dw = 4\pi f(v^2) \sqrt{\frac{2w}{m^3}} dw\ $とおけば,$f(v^2)=N(w) \frac{1}{4\pi} \sqrt{\frac{m^3}{2w}}\ $となるので,$\ v_z$の分布関数 $N(v_z) dv_z$は次式で与えられる。
$N(v_z) dv_z = \int_{-\infty}^{\infty}dv_x\int_{-\infty}^{\infty}dv_y f(v_x,v_y,v_z) dv_z = \int_{-\infty}^{\infty}dv_x\int_{-\infty}^{\infty}dv_y N(w) \frac{1}{4\pi} \sqrt{\frac{m^3}{2w}} dv_z$
$= \int_{-\infty}^{\infty}dv_x\int_{-\infty}^{\infty}dv_y \frac{2m^3}{h^3} [\exp(\frac{w - w_F}{kT}) + 1]^{-1} dv_z$
$v_x, v_y$平面での積分を2次元の極座標によって実行するため,$u^2=v_x^2+v_y^2$とおいて,$dv_x dv_y = 2\pi u du$となる。
$\therefore \quad N(v_z) dv_z = \frac{4\pi m^3}{h^3} \int_0^\infty du u [\exp(\frac{\frac{m}{2}(u^2+v_z^2) - w_F}{kT}) + 1]^{-1} dv_z$
$= \frac{4\pi m^3}{h^3} \int_0^\infty \frac{1}{2} dt [\exp(\frac{\frac{m}{2}(t+v_z^2) - w_F}{kT}) + 1]^{-1} dv_z$
ここで,$a=\exp(\frac{\frac{m}{2}v_z^2 - w_F}{kT})$,$b=\frac{m}{2kT}$とおけば,必要な積分は$\int_0^\infty \frac{1}{a \exp(bt) + 1}dt$となり,その値は$\ \frac{1}{b}\log(1+1/a)\ $である。これより,$N(v_z) dv_z = \frac{4\pi m^2 kT}{h^3} \log (1 + \exp(\frac{w_F - \frac{m}{2}v_z^2}{kT})) dv_z$
これらの分布関数をMathematicaでプロットすると次のようになる。
f[w_, kT_] := Sqrt[w]/(Exp[(w - 1)/kT] + 1)Plot[Table[f[w, 0.01*k], {k, 1, 10, 2}], {w, 0, 2},PlotRange -> {0, 1}]
g[v_, kT_] := kT/2 Log[(Exp[(1 - .5*v^2)/kT] + 1)]
Plot[Table[g[v, 0.01*k], {k, 1, 10, 2}], {v, 0, 2},PlotRange -> {0, 0.5}]
2022年4月28日木曜日
モル比熱
かつて 中学校で熱について学んだとき,もっとも重要な基本法則は熱量と温度と比熱の関係だった。これが重要であることは,大学の熱力学でもそうなのだけれど,あくまでも熱力学第一法則と第二法則の脇役であって,電磁気学のオームの法則のようなものだ。
物質量が$\ n\ $モルの体系に熱量$\ d'Q\ $を与えたときに,温度が$\ dT\ $だけ増えたとする。系の温度を1K上げるために必要な熱量である熱容量$\ {\rm [J/K]}\ $は,$\frac{d'Q}{dT} $で与えられる。このとき,系の体積を一定にするならば定積熱容量 $C_V$,系の圧力を一定にするならば定圧熱容量 $C_p$ とよぶ。これらは物質量に比例する示量変数である。
熱力学の第一法則より $\ d'Q = dU + pdV = dU + d(pV)-V dp\ $が成り立つ。したがって,$C_V = \frac{dU}{dT}$,$C_p=\frac{dU}{dT} + \frac{d(pV)}{dT}$となる。ここで,理想気体を考えると,状態方程式 $\ pV = n R T\ $が成り立ち,$C_p=C_V + n R$と表わされる。
単位質量あるいは単位物質量あたりの熱容量が比熱容量=比熱となる。定積モル比熱は$c_V=\frac{1}{n}C_V$,定圧モル比熱は$c_p=\frac{1}{n} C_p$と小文字の$c$で表わすことになるが,教科書を眺めると,そのあたりの定義や記号の使い方は必ずしもそろっているわけではなかった。
2022年4月27日水曜日
カルノーサイクル
熱力学の復習シリーズ,カルノーサイクルの練習をする。
熱力学第一法則: $dU = d'Q + d'W = d'Q - p dV$
理想気体の状態方程式: $pV=nRT$
理想気体のポアソンの法則: $pV^\gamma = const,\quad T V^{\gamma-1} = const'$
エントロピー: $dU = TdS -p dV,\quad dS = \frac{dU + pdV}{T}$
内部エネルギー: $U = nC_{V}T$
■過程 A $\rightarrow$ B($p_{\rm A}V_{\rm A}=p_{\rm B}V_{\rm B}$)
理想気体が高温熱源$T_{\rm H}$と接触を保ちつつ,一定の温度$T_{\rm H}$の状態を保ちつつ,熱量$Q_{\rm H}$をもらって膨張し,外へ仕事$W_{\rm AB}$をする。理想気体の温度は一定なので,内部エネルギーは$U_{\rm B}=U_{\rm A}$であり,熱力学第一法則より$W_{\rm AB}=Q_{\rm H}$である。
外部にした仕事は,$W_{\rm AB}=\int_{V_{\rm A}}^{V_{\rm B}}p dV = \int_{V_{\rm A}}^{V_{\rm B}}\frac{nRT_{\rm H}}{V} dV=nRT_{\rm H}\log \frac{V_{\rm B}}{V_{\rm A}} = Q_{\rm H}$
エントロピー変化は,$S_{\rm AB}= \int_{\rm A}^{\rm B} dS = \int_{V_{\rm A}}^{V_{\rm B}} \frac{p}{T} dV = \int_{V_{\rm A}}^{V_{\rm B}} \frac{nR}{V} dV = nR \log \frac{V_{\rm B}}{V_{\rm A}} = \frac{Q_{\rm H}}{T_{\rm H}}$
■過程 B $\rightarrow$ C($p_{\rm B}V_{\rm B}^\gamma=p_{\rm C}V_{\rm C}^\gamma \quad T_{\rm H} V_{\rm B}^{\gamma-1} = T_{\rm L} V_{\rm C}^{\gamma-1}$)
断熱壁と接触する理想気体が,熱の流入なしに断熱的に膨張して外に仕事$W_{\rm BC}$をする。熱力学第一法則によって,理想気体の内部エネルギーは$U_{\rm B}$から$U_{\rm C}$まで減少し,温度は$T_{\rm L}$まで下がる。熱の出入りがないのでエントロピーは変化しない。
外部にした仕事は,$W_{\rm BC}=\int_{V_{\rm B}}^{V_{\rm C}}p dV = \int_{\rm B}^{\rm C} -dU = U_{\rm B}-U_{\rm C} = U(T_{\rm H}) - U(T_{\rm L})= n C_V (T_{\rm H}-T_{\rm L})$
■過程 C $\rightarrow$ D($p_{\rm C}V_{\rm C}=p_{\rm D}V_{\rm D}$)
理想気体が低温熱源$T_{\rm L}$と接触を保ちつつ,一定の温度$T_{\rm L}$の状態を保ちつつ,熱量$Q_{\rm L}$を放出して収縮し,外から仕事$W_{\rm CD}$がなされる。理想気体の温度は一定なので,内部エネルギーは$U_{\rm D}=U_{\rm C}$であり,熱力学第一法則より$W_{\rm CD}=Q_{\rm L}$である。
外部からされる仕事は,$W_{\rm CD}=\int_{V_{\rm C}}^{V_{\rm D}}-p dV = \int_{V_{\rm C}}^{V_{\rm D}}-\frac{nRT_{\rm L}}{V} dV=nRT_{\rm L}\log \frac{V_{\rm C}}{V_{\rm D}} = Q_{\rm L}$
エントロピー変化は,$S_{\rm CD}= \int_{\rm C}^{\rm D} dS = \int_{V_{\rm C}}^{V_{\rm D}} \frac{p}{T} dV = \int_{V_{\rm C}}^{V_{\rm D}} \frac{nR}{V} dV = nR \log \frac{V_{\rm D}}{V_{\rm C}} = - \frac{Q_{\rm L}}{T_{\rm L}}$
■過程 D $\rightarrow$ A($p_{\rm D}V_{\rm D}^\gamma=p_{\rm A}V_{\rm A}^\gamma \quad T_{\rm L} V_{\rm D}^{\gamma-1} = T_{\rm H} V_{\rm A}^{\gamma-1}$)
断熱壁と接触する理想気体を,熱の流入なしに断熱的に圧縮して外から仕事$W_{\rm BC}$がされる。熱力学第一法則によって,理想気体の内部エネルギーは$U_{\rm C}$から$U_{\rm D}$まで増加し,温度は$T_{\rm H}$まで上がる。熱の出入りがないのでエントロピーは変化しない。
外部からされる仕事は,$W_{\rm DA}=\int_{V_{\rm D}}^{V_{\rm A}}- p dV = \int_{\rm D}^{\rm A} dU = U_{\rm A}-U_{\rm D} = U(T_{\rm H}) - U(T_{\rm L})= n C_V (T_{\rm H}-T_{\rm L})$
■カルノーサイクルの効率
1サイクルの過程${\rm A \rightarrow B \rightarrow C \rightarrow D \rightarrow A}$において,理想気体(作業物質)が外部にする正味の仕事は,$W = W_{\rm AB} + W_{\rm BC} - W_{\rm CD} -W_{\rm DA} = W_{\rm AB} - W_{\rm CD}$
$= nRT_{\rm H}\log \frac{V_{\rm B}}{V_{\rm A}} - nRT_{\rm L} \log \frac{V_{\rm C}}{V_{\rm D}} = Q_{\rm H}-Q_{\rm L}$
このカルノーサイクルの効率は $\eta = \frac{W}{Q_{\rm H}} = \frac{Q_{\rm H}-Q_{\rm L}}{Q_{\rm H}} = 1 - \frac{Q_{\rm L}}{Q_{\rm H}}$で与えられる。
ところで,ポアソンの法則の温度と体積の関係式を組み合わせると,
$\frac{T_{\rm H}}{T_{\rm L}}=\Bigl( \frac{V_{\rm C}}{V_{\rm B}}\Bigr)^{\gamma-1}=\Bigl(\frac{V_{\rm D}}{V_{\rm A}}\Bigr)^{\gamma-1}$,
したがって,$\frac{V_{\rm C}}{V_{\rm B}}=\frac{V_{\rm D}}{V_{\rm A}} \quad \frac{V_{\rm A}}{V_{\rm B}}=\frac{V_{\rm D}}{V_{\rm C}} $
$\therefore \frac{Q_{\rm L}}{Q_{\rm H}}=\frac{nRT_{\rm L}\log \frac{V_{\rm C}}{V_{\rm D}}}{nRT_{\rm H}\log \frac{V_{\rm B}}{V_{\rm A}}}=\frac{T_{\rm L}}{T_{\rm H}}, \quad \eta = 1 - \frac{T_{\rm L}}{T_{\rm H}}$
■カルノーサイクルのエントロピー
$S = S_{\rm AB} + S_{\rm BC} +S_{\rm CD} +S_{\rm DA} = \frac{Q_{\rm H}}{T_{\rm H}} - \frac{Q_{\rm L}}{T_{\rm L}} = nR \log \frac{V_{\rm B}}{V_{\rm A}} + nR \log \frac{V_{\rm D}}{V_{\rm C}} = 0 $
カルノーサイクルでは,${\rm A} \rightarrow {\rm B}$の等温膨張過程で熱を吸収するとともに,理想気体のエントロピーが増加し,${\rm C} \rightarrow {\rm D}$の等温圧縮過程で熱を放出するとともに,理想気体のエントロピーが減少する。その結果,1サイクルが終了後にはエントロピーの増減はなくなり,エントロピーが状態量であることが保証されている。
2022年4月25日月曜日
ミクロカノニカル分布
ミクロカノニカル分布について。
小正準集団(ミクロカノニカルアンサンブル)とは,外界から孤立した系の熱平衡状態を記述するための統計集団。考えている孤立系と粒子数($N$),体積($V$)が等しく,エネルギー($E$)がある幅($\delta E$)の範囲で等しい系(コピー)の集団である。その数は,下記で定義される微視的な状態数$W$に等しい。
考えている$\ N\ $粒子系の位相空間($\Gamma\ $空間)とする。1粒子の位相空間($\mu\ $空間)の体積が$h^f$で表わされるとき,$\Gamma\ $空間の細胞$\ d\Gamma\ $における微視的な状態数を$\ dW = \frac{1}{h^{Nf}} d\Gamma = \frac{1}{h^{Nf}} dq_1 \cdots dq_N\ dp_1 \cdots dp_N$とする。これから,$W= \frac{1}{h^{Nf}} \int_{E}^{E+\delta E} dq_1 \cdots dq_N\ dp_1 \cdots dp_N$
等重率の原理は,巨視的に観測される全エネルギーが$E$である小正準集団がすべておなじ重みで確率的な平均操作に寄与するというものである。この確率分布を小正準分布(ミクロカノニカル分布)とよぶ。このとき,ある物理量$A(q_1 \cdots q_N, p_1 \cdots p_N)$において,これを小正準分布を用いてその観測される期待値を求めると次式のようになる。
$\langle A \rangle = \int_{E}^{E+\delta E} A(q_1 \cdots q_N, p_1 \cdots p_N) dq_1 \cdots dq_N\ dp_1 \cdots dp_N / \int_{E}^{E+\delta E} dq_1 \cdots dq_N\ dp_1 \cdots dp_N$
等重率の原理を用いて,$N$粒子系の全位相空間の点を同じ確率で扱う根拠として,かつては,エルゴート定理をその根拠とする教科書が多かった。ところが,田崎晴明さんの統計力学の教科書(2008)でこれを否定してからは,こうした教科書は少なくなった。もっとも,高橋康さんの統計力学入門(1984)には,そのあたりはていねいに書いてあったのだった。