2022年5月4日水曜日

クローニッヒ・ペニーモデル(3)

クローニッヒ・ペニーモデル(2)からの続き

1次元ポテンシャルに周期性があるときに,ブロッホの定理から$\psi(x)=e^{ikx}\varphi(x)$と表わせて,$\psi(x+a)=e^{ik(x+a)}\varphi(x+a)=e^{ika} e^{ikx}\varphi(x)=e^{ika}\psi(x)$が成り立つ。このときの波動関数は運動量演算子の固有状態なのだろうか?違います。前回やったように,このハミルトニアンは有限の並進操作に対して不変だけれど,運動量に対応する無限小並進操作については不変ではないから。

ところで,この長さ$L=N a$の1次元周期ポテンシャルモデルの両端を同一視する周期境界条件をつけると($N$はポテンシャルステップの数=原子数,$a$はポテンシャルの周期=原子間隔),$\psi(L)=\psi(0) \quad \psi(L)=e^{i k a \cdot N}\psi(0) \quad \therefore e^{i k a N}=1$

これから$k$に対する条件,$k_n = \frac{2\pi n}{a N}\quad (n=0,\pm 1, \pm 2 \cdots)\ $が得られる。$k_n$は量子数 $n$ で特徴づけられるこの状態の波数という意味をもつ。

前回得られた境界条件は,系のエネルギーを$E$,ポテンシャルの深さと幅を$V_0, b$,ポテンシャル周期を$a$として,$p=\frac{\sqrt{2mE}}{\hbar}$,$q=\frac{\sqrt{2m(V_0-E)}}{\hbar}$とおくと,$  \cos k a  =  \cos p(a-b) \cosh qb + \frac{q^2-p^2}{2 p q} \sin p(a-b) \sinh qb $ である。これは,与えられた$k = k_n$に対して,系のエネルギーを決定する式になる。

(1) $b \rightarrow 0$ の極限では$p_n=k_n$となり,$E_n=\frac{\hbar k_n^2}{2m} = \frac{2 \hbar^2 \pi^2 n^2}{m a^2 N^2}$となる。

(2) 次に,$V_0 b$を一定に保ちながら,$b \rightarrow 0,\ V_0 \rightarrow \infty$とするδ関数型極限を考える。このとき,$\sinh qb \rightarrow qb$であり,右辺第2項は,$\frac{(q^2-p^2)ba}{2} \frac{\sin p(a-b)}{p a} $となる。最終的に,$  \cos k a  =  \cos p a + \frac{m c^2 V_0 b a}{(\hbar c)^2} \frac{\sin pa}{pa}$ という近似式が得られる。


例えば,$a=2$ Å,$b=0.04$ Å,$mc^2 = 0.511 \times 10^6$ eV,$ \hbar c =1973$ eV Å, $V_0=100$ eVとすると, 無次元のポテンシャル強度パラメータは,$\frac{m c^2 V_0 b a}{(\hbar c)^2}=1.05$となる。


0 件のコメント: