2023年10月20日金曜日

円筒座標のベクトル解析

円筒座標系の基本ベクトルは,$\bm{e}_\rho, \bm{e}_\phi, \bm{e}_z$であり互いに直交している。
$\bm{e}_\rho = \bm{e}_x \cos\phi + \bm{e}_y \sin\phi $, $\bm{e}_\phi = -\bm{e}_x \sin\phi + \bm{e}_y \cos\phi$から,$\dfrac{\partial \bm{e}_\rho }{\partial \phi} = \bm{e}_\phi,\ \  \dfrac{\partial \bm{e}_\phi }{\partial \phi} = - \bm{e}_\rho$ が成り立つ。その他の基本ベクトルの各変数での微分はゼロ。

ここで,$\nabla = \bm{e}_\rho \dfrac{\partial}{\partial \rho} + \bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi}  + \bm{e}_z \dfrac{\partial}{\partial z} $であり,任意のベクトルは,$\bm{A}= \bm{e}_\rho A_\rho + \bm{e}_\phi A_\phi  + \bm{e}_z A_z$とかける。

したがって,円筒座標系での発散や回転は,この演算子とベクトルの内積や外積を機械的に計算すれば良い。ただし,微分演算が基本ベクトルに作用して現れる項があることだけ注意が必要となる。今回は,$\bm{e}_\rho,\ \bm{e}_\phi$を$\phi$で微分する項の存在に気をつける。

発散は,$\nabla\cdot\bm{A} = \Bigl(  \bm{e}_\rho \dfrac{\partial}{\partial \rho} + \bm{e}_\phi \dfrac{1}{r} \dfrac{\partial}{\partial \phi}  + \bm{e}_z \dfrac{\partial}{\partial z}\Bigr) \cdot \Bigl( \bm{e}_\rho A_\rho + \bm{e}_\phi A_\phi  + \bm{e}_z A_z \Bigr)$
余分の項は,$\bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi} \cdot  \bm{e}_\rho A_\rho = \bm{e}_\phi \dfrac{1}{\rho} \cdot  \bm{e}_\phi A_\rho = \dfrac{1}{\rho} A_\rho$である。
$\therefore \  \nabla\cdot\bm{A} = \dfrac{1}{\rho}\dfrac{\partial}{\partial \rho} \bigl(\rho A_\rho \bigr) + \dfrac{1}{\rho}\dfrac{\partial}{\partial \phi} A_\phi + \dfrac{\partial}{\partial z} A_z$

回転は,$\nabla \times \bm{A} = \Bigl(  \bm{e}_\rho \dfrac{\partial}{\partial \rho} + \bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi}  + \bm{e}_z \dfrac{\partial}{\partial z}\Bigr) \times \Bigl( \bm{e}_\rho A_\rho + \bm{e}_\phi A_\phi  + \bm{e}_z A_z \Bigr)$
余分の項は,$\bm{e}_\phi \dfrac{1}{\rho} \dfrac{\partial}{\partial \phi} \times  \bm{e}_\phi A_\phi = \bm{e}_\phi \dfrac{1}{\rho}  \times  (-\bm{e}_\rho ) A_\phi  =  \dfrac{1}{\rho} A_\phi \bm{e}_z$である。
$\therefore \  \nabla \times \bm{A} = \Bigl( \dfrac{1}{\rho} \dfrac{\partial A_z}{\partial\phi}- \dfrac{\partial A_\phi}{\partial z}\Bigr) \bm{e}_r + \Bigl(  \dfrac{\partial A_\rho}{\partial z}- \dfrac{\partial A_z}{\partial \rho}\Bigr) \bm{e}_\phi +  \dfrac{1}{\rho} \Bigl(  \dfrac{\partial (\rho A_\phi )}{\partial \rho}- \dfrac{\partial A_\rho}{\partial \phi}\Bigr) \bm{e}_z $

2023年10月19日木曜日

処理水と廃炉

10月18日(水)のNHKあさイチは「処理水は?廃炉は?みんなのキニナルに答えます」という特集だった。

どうせ,政府東京電力の提灯持ち番組だろうと思って,期待せずにみていた。確かに,ALPS処理水で育てているヒラメが元気に跳ねていたり,茨城大学理工学部の鳥養祐二が魚のトリチウム分析をしている映像を見せて(長時間の事前処理が必要だという話はどこへいった),安全性を印象づけるものではあった。

一方で,ALPSのフィルターや廃材,使用済み防護服などの放射性廃棄物を敷地内に保管する必要があって,それがどんどん増えていくところ(処理水タンクすらその対象の放射性廃棄物になる)が印象的だった。また,2号機と同型の5号機の原子炉内部を撮影しながら,損傷してデブリが880トンもたまっている1-3号機の廃炉プロセスがほとんど進んでいないこともリアルに伝わってきた。

2号機では,ロボットアームを使って,今年度中に数グラムのデブリ採取を初めて実施する予定だ。そのアクセスのための格納容器内部への貫通路(直径55cm)の蓋のボルトを外すのに5ヶ月かかり,昨日ようやく蓋が開いたのだが,堆積物でそのほとんどが埋っていた。6年かけて開発してきたロボットアームがそもそも入るのかという問題になっている。

チェルノブイリは100年持つ石棺で固めたが,廃炉はできていない。スリーマイル島は事故後45年近く経過したが,こちらも完了しておらず,2079年(事故から100年後)を廃炉目標としている。一方,全く進んでいない福島第一原子力発電所は,当初の2051年廃炉目標がそのまま示されたままだ。この調子ならば,ALPS処理水の排出も100年続くということかもしれない。

日本全国の公共土木インフラや工場地帯が静かに朽ちて行くのと同様に,原子力発電所の跡地も管理できなくなって,日本中の廃虚から有害化学物質や放射性廃棄物がたれ流しになる時代がくるのかもしれない。大阪万博や辺野古等にリソースをつぎ込んでいる場合ではない。


写真:福島第一原発2号機の貫通路ハッチ蓋の内部(YahooNewsから引用)

2023年10月18日水曜日

恒星間天体

オウムアムアという天体が,大陽系の外から飛来した恒星間天体だとして話題になったのは2017年のことだった。当初推定されていたその形が,全長800mの非常に細長い棒状のものであり,なんらかの人工物ではないかという議論まであった。

コズミックフロントのはずなのだが,最近NHKで見たのは次のようなことだった[1, 2]。
・オウムアウアの変光は,サイズが45m×44m×7.5mの円盤型でアルベドが0.64とすれば説明できる。このアルベドは冥王星やトリトンの凍った窒素表面と一致する。
・オウムアウアの加速で,ガスがみえないことは,窒素だとすれば説明できる。
・したがって,オウムアウアは太陽系外惑星のかけらかもしれない

これに対する反論もあって,どこにそんなたくさん窒素があるものか,というようなものだった[3]。

もうひとつのポイントは,オウムアウアの他にも恒星間天体が見つかっているというものだ。2019年のボリソフ彗星や,2014年のパプアニューギニア火球である。さらに,100m級の恒星間天体は,海王星軌道内に1万個程度定常的に存在し,その平均滞在時間は10年ということになるらしい[4]。


図:オウムアウアの軌道(Wikipediaから引用)

[4]Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes
(D. Jewitt, J. Luu, J. Rajagopal, R. Kotulla, S. Ridgway, W. Liu, T. Augusteijn)


2023年10月17日火曜日

久々のJulia

プログラミングはAIに任せる時代になってしまったので,自分でコードを書くのは棋士の卵が詰め将棋の練習をしているようなことかもしれない。

Homebrewでmacにインストールされているソフトウェアを定期的に更新しているが,jupyterlabは,毎回,手動により brew link jupyterlab をすることを強いるのでうっとうしい。そんなこともあって,しばらくJuliaから足が遠のいていた。

鈴木貫太郎のYouTubeの数学の問題では,しばしば,整数の冪を比較するような問題が登場する。そこで,2^m と3^n が非常に近くなるような整数を探してみようと思った。m,nを1から順に条件を判定しながら増やしていけばよいかと思ったけれど,実際にコードを書いてみると,面倒なロジックは組まずに虱潰しに調べたほうが簡単そうであった。

久々にプログラミングすると,浮動小数点数から整数への変換がどうなっているかなど,基本的なところを忘れてしまっている。困ったものだ。これはconvert(T, x)だと書いてあったのだが,エラーになる。ChatGPTに相談してみたら,floor(T,x)とceil(T,x)を使いなさいとのことだった。その結果が次のコードである。
function dt(N,eps)
# N=1000000
# eps = 1.0e-6
ratio = log(2)/log(3)
    for i in 1:N
        jmin = floor(Int64,i*ratio)
        jmax = ceil(Int64,i*ratio)
        for j in jmin:jmax
            sol = i*log(2) - j*log(3)
            if abs(sol) < eps
                println("  2**",i,"/","3**",j," = ",exp(sol))
            end
        end
    end
end

for k = 1:8
    N=10^k
    eps=1/N
    println("N=",N," eps=",eps)
    @time(dt(N,eps))
end
N=10 eps=0.1
  2**8/3**5 = 1.0534979423868305
  0.000176 seconds (98 allocations: 2.750 KiB)
N=100 eps=0.01
  2**84/3**53 = 0.9979140462573083
  0.000160 seconds (97 allocations: 2.562 KiB)
N=1000 eps=0.001
  0.000003 seconds
N=10000 eps=0.0001
  2**1054/3**665 = 0.9999563468421858
  2**2108/3**1330 = 0.9999126955899699
  0.000351 seconds (207 allocations: 5.609 KiB)
N=100000 eps=1.0e-5
  2**50508/3**31867 = 0.9999927350845753
  0.000408 seconds (103 allocations: 2.656 KiB)
N=1000000 eps=1.0e-6
  2**301994/3**190537 = 1.0000000644940903
  2**603988/3**381074 = 1.0000001289881848
  2**905982/3**571611 = 1.0000001934822835
  0.003297 seconds (311 allocations: 8.562 KiB)
N=10000000 eps=1.0e-7
  2**301994/3**190537 = 1.0000000644940903
  0.027930 seconds (105 allocations: 4.938 KiB)
N=100000000 eps=1.0e-8
  2**85137581/3**53715833 = 0.9999999925494194
  0.264204 seconds (229 allocations: 17.953 KiB)

 いちおうできたことにしておこう。

2023年10月16日月曜日

導体球(4)

導体球(3)からの続き

ついでに,電場を取り除いて,導体球に電荷を与えて導体球表面に球対称一様電荷分布が生ずる状況を考える。

先ほどと同様に,観測点の位置ベクトル$\bm{r}$方向に$z$軸をとる。球対称性から$x$軸は自由に設定することができる。この結果,電位は次式で与えられる。

$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2}{4\pi\varepsilon_0} \int \dfrac{ \sin \theta' d\theta' d\phi'}{ \sqrt{r^2+R^2-2rR \cos \theta'}} =  \dfrac{\sigma R^2}{2\varepsilon_0} \int \dfrac{ \sin \theta' d\theta'}{ \sqrt{r^2+R^2-2rR \cos \theta'}}$

再び,$\alpha = r^2+R^2 $,$\beta = 2 r R\ $と置いて,$\sqrt{\alpha -\beta}=| r-R |,\ \sqrt{\alpha + \beta}= r + R\ $である。$t = \cos \theta'$と変数変換して,$ dt = -\sin \theta' d\theta' \ $ なので,
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2}{2 \varepsilon_0} \int_{-1}^1 \dfrac{dt}{\sqrt{\alpha - \beta t }} = \dfrac{\sigma R^2}{2 \varepsilon_0} \Bigl\lvert \dfrac{-2}{\beta} \sqrt{\alpha - \beta t}\Bigr\rvert_{-1}^1 = \dfrac{\sigma R}{2 \varepsilon_0 r}(\sqrt{\alpha+\beta}-\sqrt{\alpha-\beta})$
$\displaystyle =  \dfrac{\sigma R}{2 \varepsilon_0 r} (r+R -|r-R|)$

したがって,$Q=4\pi R^2 \sigma$と置くと,次のように正しい静電ポテンシャルが得られた。
$\displaystyle V(\bm{r}) = \dfrac{Q}{4\pi \varepsilon_0 R}\quad (r<R)$
$\displaystyle V(\bm{r}) = \dfrac{Q}{4\pi \varepsilon_0 r} \quad (r>R)$

2023年10月15日日曜日

導体球(3)

導体球(2)からの続き

物理科学概説の授業で,表面に一様な電荷が分布する球殻内部の電場や電位の問題を説明しようとした。積分にまで踏み込めないが,立体角を使えばなんとか説明できる。ところでこれを真面目に積分計算しようとすると,電場中の導体球と同じ問題(面倒な楕円関数の積分が必要)が生ずることに今さらながら気がついた。

力学の重力ポテンシャルの場合も同じ問題があったはずで,これまでどうやって回避していたか思い出してみると,観測点の位置ベクトルの方向をz軸にとっている。これにより球対称性から簡単に積分ができていた。この方法が,一様電場中の導体球による表面電荷分布に対しても使えそうな気がしたので再挑戦してみる。

(1) 導体球の中心に置いた原点から観測点Pへの位置ベクトル$\bm{r}$の方向を$z$軸にとる。
そこで,$\bm{r} = (0,\ 0,\ r)$

(2) 一様電場ベクトル方向の導体球面上の位置ベクトル$\bm{e}$の$x-y$平面への射影を$x$軸にとる。このとき,$\bm{e}=(R \sin\lambda,\ 0,\  R \cos\lambda )$,ここで導体球の半径を$R$としている。

(3) 導体球面上の点Qへの位置ベクトルを,$\bm{r'}=(R \sin\theta' \cos\phi',\ R\sin\theta' \sin\phi',\ R\cos\theta')$とする。Qにある電荷要素は,$\rho(\bm{r'}) dS = \sigma R^2 \cos \omega \sin \theta' d\theta' d\phi'$である。ここで,$\sigma$は電荷面密度,$\cos\omega$は,$\bm{e}$と$\bm{r'}$のなす角度であり,$\cos\omega = \frac{\bm{e}\cdot\bm{r'}}{R^2} =  \sin \lambda \sin\theta' \cos\phi' + \cos \lambda \cos\theta' $である。

(4) 観測点Pと電荷要素点Qを結ぶ距離は,$|\bm{r} - \bm{r'}| = \sqrt{r^2+R^2-2rR \cos \theta'}$となる。

そこで,この電荷密度分布$\rho(\bm{r'})$がつくる静電ポテンシャル$V(\bm{r})$は次のようになる。
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2}{4\pi\varepsilon_0} \int \dfrac{(\sin \lambda \sin\theta' \cos\phi' + \cos \lambda \cos\theta' ) \sin \theta' d\theta' d\phi'}{ \sqrt{r^2+R^2-2rR \cos \theta'}}$

ここで,積分のうち,$\int_0^{2\pi} d \phi'$を実行すると,分子の$\cos\phi'$ を含む項はゼロになり,残りの項は$2\pi$倍となるので,
$\displaystyle V(\bm{r}) = \dfrac{2\pi \sigma R^2}{4\pi\varepsilon_0} \int \dfrac{( \cos \lambda \cos\theta' ) \sin \theta' d\theta'}{ \sqrt{r^2+R^2-2rR \cos \theta'}}$

さらに,$\alpha = r^2+R^2 $,$\beta = 2 r R\ $と置くと,$\sqrt{\alpha -\beta}=| r-R |,\ \sqrt{\alpha + \beta}= r + R\ $である。$t = \cos \theta'$と変数変換して,$ dt = -\sin \theta' d\theta' \ $ なので,
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2 \cos\lambda}{2 \varepsilon_0} \int_{-1}^1 \dfrac{t dt}{\sqrt{\alpha - \beta t }}$

この積分$I$は部分積分によって実行され,次のような結果を得る。
$\displaystyle I = \int_{-1}^1 \dfrac{t dt}{\sqrt{\alpha - \beta t}} = -\dfrac{4 \alpha}{3 \beta^2}\bigl(  \sqrt{\alpha -\beta} - \sqrt{\alpha + \beta} \bigr) -\dfrac{2}{3\beta} \bigl( \sqrt{\alpha - \beta} + \sqrt{\alpha + \beta}\bigr)$
すなわち,$\displaystyle I= \dfrac{2r}{3 R^2}\ (r<R),\quad I=\dfrac{2R}{3r^2}\ (r>R)$
最終的に,導体球の中の電位は線形になり,電場は一定になる。
$\displaystyle V(\bm{r}) = \dfrac{\sigma \cos\lambda}{3 \varepsilon_0} r  \quad (r<R)$

2023年10月14日土曜日

物理学科同窓会(2)


先週の土曜日に新大阪のワシントンホテルプラザで,阪大物理学科の同窓会があった。1972年(昭和47年)入学なので,昨年が50年目だった。10年前からこの同窓会が概ね毎年開催されるようになった。参加者は順次定年を迎えていくので,だんだん変化に乏しい日々が続き,健康や病気の話題の割合が増えてくる。

今年は,藤原さんのリクエストに端を発して,元原研の佐藤さんに「核融合の最近の現状」というタイトルで話をしていただいた。慣れないzoom経由で,音声トラブルがあったけれど,わかったことは次のとおり。

・ITERもJT60SAも何だかトラブっている。
・ステラレーターは連続だけれど,トカマクは準パルス的な動作をする。
・レーザー核融合のQ=1は,実質は1/100程度になるので,トカマクが有利。
・国内ベンチャーには,研究者がかんでいるが,まとまった炉システムを目指していない。

尾崎さんの,太陽光発電パネルにつけて効率アップする集光シートの特許の顛末もおもしろかった。実用化しようとするとほんの小さな金型だけで2000万円くらいになって,なかなかうまくいかなかったらしい。

2023年10月13日金曜日

PBL

 PBLというのも紛らわしい言葉だ。対話型AIにきいてみよう。

Q;問題解決型学習(Problem Based Learning)と課題探究型学習(Project based Learning)の違いを詳しく教えてください。定義,適用学年,適用教科,意義,課題などを比較してほしいです。

ChatGPT,Bard,Bing のそれぞれが適当な答えを返してきた。ネットで人力検索してもサイトごとにマチマチな見解が示されている。そしてみんなそれに躍らされている。自分も踊っていた。そのせいで,「物理課題研究プロジェクト」なる学部科目を担当することになった。自業自得である。しかし,非常勤講師の自分は与えられた条件で,普通の物理学問題演習の時間をこなしていくことになるのだった。

仕方がないので,更問いを加えてみたところ,いちおうChatGPTの見解が得られた。
Q:「課題の設定者が教員か生徒か」「課題が教科限定的か学際的か」「評価のポイントはプロセスかアウトプットか」「期間は短いか長いか」という観点では,問題解決型学習(Problem Based Learning)と課題探究型学習(Project based Learning)の違いがどうなりますか。
A:以下は、問題解決型学習(PBL)と課題探究型学習(PjBL)の違いをそれぞれの観点で比較したものです。

課題の設定者が教員か生徒か:
PBL: 問題の設定者は通常教員であり、学習者に対して特定の問題を提供します。
PjBL: 学習者が自ら興味や関心に基づいてプロジェクトを選び、課題を設定します。

課題が教科限定的か学際的か:
PBL: 問題は通常特定の教科に関連しており、その教科における問題解決を中心に学習が行われます。
PjBL: 課題は学際的であり、複数の教科を組み合わせてプロジェクトを通じて学習が行われます。

評価のポイントはプロセスかアウトプットか:
PBL: 評価の重点は、問題解決のプロセス、つまり学習者がどれだけ効果的に問題に取り組んだかに置かれます。
PjBL: 評価はプロジェクトのアウトプット、つまり成果物やプロジェクトの完成度に焦点を当てます。

期間は短いか長いか:
PBL: 問題解決の期間は比較的短い場合が多く、特定の問題に対処する短期的な活動が一般的です。
PjBL: プロジェクトの期間は通常長く、複数の週や学期にわたって続く場合があります。

これらの要素に基づいて、PBLとPjBLは異なるアプローチを取ります。PBLは特定の問題に焦点を当て、その解決策を見つけるためのプロセスに重点を置きます。一方、PjBLは学習者の興味や関心を反映したプロジェクトを通じて、幅広い学際的な学びを促進します。

これはあくまでもChatGPTの見解 (もしかすると平均的な世論)であることに注意が必要。これにアクティブラーニングの定義をどうするか問題を加えるとさらに混乱は必至である。


[1]今、求められる力を高める総合的な探究の時間の展開(小学校編,文部科学省)
[3]今、求められる力を高める総合的な探究の時間の展開(高等学校編,文部科学省)

2023年10月12日木曜日

導体球(2)

導体球(1)からの続き

一般の電荷密度分布$\rho(\bm{r'})$がつくる静電ポテンシャル$V(\bm{r})$は次のようになる。
$\displaystyle V(\bm{r}) = \dfrac{1}{4\pi\varepsilon_0} \int \dfrac{\rho(\bm{r'}) d\bm{r}'}{|\bm{r} - \bm{r'}|}$
ここで,ポテンシャルの位置座標は,$\bm{r} = (r \sin \theta \cos \phi, r \sin \theta \sin \phi , r \cos \theta)$,電荷素片の位置座標は,$\bm{r'} = (R \sin \theta' \cos \phi', R \sin \theta' \sin \phi' , R \cos \theta')$であり,$R\ $は導体球の半径。
また,静電誘導で導体球表面に誘起される電荷は $\rho(\bm{r'}) d\bm{r}' = \sigma \cos \theta' \sin \theta' d \theta' d\phi'$である。

したがって,
$\displaystyle V(\bm{r}) = \dfrac{\sigma}{4\pi\varepsilon_0} \int \dfrac{\cos \theta' \sin \theta' d\theta' d\phi'}{\sqrt{r^2+R^2-2rR (\sin \theta \sin \theta' \cos \phi' + \cos\theta \cos \theta')}}$
ただし,$\bm{r}$を含む平面内に$x$座標をとって,$\phi = 0$となるようにした。

$\alpha = r^2+R^2 -2rR  \cos\theta \cos \theta' \ge 0$,$\beta = 2 r R \sin \theta \sin \theta' \ge 0$と置くと,
$\displaystyle V(\bm{r}) = \dfrac{\sigma}{4\pi\varepsilon_0} \int \dfrac{\cos \theta' \sin \theta' d\theta' d\phi'}{\sqrt{\alpha - \beta \cos \phi'}}$
この$\phi'$による積分のところ$I_{\phi'}$は楕円積分となる。$\cos \phi' = 1- 2 \sin^2 \frac{\phi'}{2}$とすれば,
$\displaystyle I_{\phi'} = \int_0^{\pi/2} \frac{d\phi '}{\sqrt{(\alpha - \beta) + 2\beta \sin^2 \frac{\phi'}{2}}} = \int_0^{\pi/2} \frac{d\phi '}{\sqrt{(\alpha + \beta) - 2\beta \cos^2 \frac{\phi'}{2}}} $

仮にここまでできたとしても,$\alpha, \beta$に$\theta'$が含まれているものをさらに積分するのはどうしましょうとなった。チーン。

2023年10月11日水曜日

導体球(1)

非常勤講師をとして勤めるのも最後のセメスターになった。物理学概説という科目を担当することになり,原康夫さんの物理学基礎第5版のテキストを使っている。

講義の内容は,電磁気学現代物理学の範囲だ。以前,電磁気学の授業を担当したとき,静電気については,電荷分布から電場と電位(静電ポテンシャル)を導くという展開だった。時間の関係もあって,導体の概念や関連部分は飛ばしてしまっていた。これはだめです。

外部から一様電場をかけた導体球内部には電場が存在せず,電位は一定になる。これを簡単に求めるためには,導体球の中心に電気双極子を置いて,外部電場と重ね合わせるのが普通の教科書の手順だ。砂川さん理論電磁気学では静電ポテンシャルのルジャンドル展開を使ってもっとスマートに導出していた。

このとき,導体表面には球の中心Oを原点とし,電場方向を結ぶ座標軸からの角度の余弦に比例する電荷が分布することになる。それではこのような電荷分布から一様な電場が直接計算できるはずだが,残念ながら探してもその計算を具体的にしている資料はみつからない。

この計算では表面電荷分布を表す2つの角度について積分する必要がある。1つの変数での積分は楕円積分になるが,これをさらに積分するのはちょっと無理そうだ。しかたがないので,数値積分してみると,外部電場方向に垂直な等電位面が現れた。

f[r_, u_] := NIntegrate[ Cos[t] Sin[t]/
     Sqrt[r^2 + 1 - 2 r*(Sin[u] Sin[t] Cos[s] + Cos[u] Cos[t])],
             {t,  0, Pi}, {s, 0, 2 Pi}] / (r*Cos[u])

ここで,導体球の半径をR=1として,内部の点を(r sin u, 0, r cos u ),導体球面上の電荷要素の位置を (R sin t cos s, R sin t sin s, R cos t ) として,変数tと変数sで積分している。電荷分布は σ cos t で,積分結果を内部点のz座標 r cos u で割った。この結果が,内部点の座標変数 r, u を変えても一定になったので,等電位面が出現したことになる。



図:一様電場中の導体球(前野昌弘さんのテキストから引用)



2023年10月10日火曜日

(秋休み 9)

生・老・病・死
삶 (saeng)・늙음 (neolgum)・병 (byeong)・죽음(jumum)

2023年10月9日月曜日

2023年10月8日日曜日

(秋休み 7)

岩・石・砂・泥
바위 (bawi)・돌 (dol)・모래 (morae)・진흙 (jinheuk)

2023年10月7日土曜日

(秋休み 6)

黄・緑・紫・藍
노랑 (norang)・녹색 (nokseok)・보라 (bora)・남색 (namseok)

2023年10月6日金曜日

(秋休み 5)

赤・白・黒・青
빨강 (ppalgang)・하양 (hayan)・검정 (geomjeong)・파랑 (parang)

2023年10月5日木曜日

(秋休み 4)

虎・鹿・狐・猿
호랑이 (horangi)・사슴 (saseom)・여우 (yeowoo)・원숭이 (wonsungi)

2023年10月4日水曜日

2023年10月3日火曜日

(秋休み 2)

犬・猫・兎・鼠
개 (gae)・고양이 (goyangi)・토끼 (tokki)・쥐 (jwi)

2023年10月2日月曜日

2023年10月1日日曜日

中秋の名月

「今年の中秋の名月は満月です」というニュースが流れて「?」となった。中秋の名月=満月ではなかったのか。

ベランダに出て見ると,今年は雲も少なく綺麗な満月が見えていた。もっとも,自分の眼だと満月はぼやけて形もはっきりしない。なお,月見団子も食べてはいない。

国立天文台暦計算室にその説明があった。月の満ち欠け周期に基づく陰暦では,毎月15日が満月となる。中秋の名月とは旧暦の秋(7月,8月,9月)の中央日である中秋=8月15日の月を指すので,太陰暦的には満月になっているはずなのだ。

ところで,今使われている太陽暦では,その辺にズレがあるために,中秋の日=満月にならないということらしい。ただし,この誤差はたかだか-1〜+2日程度なのでほぼ満月といっておけば問題なかった。


写真:中秋の名月(SKYWARD+からの引用

2023年9月30日土曜日

万博会場

最近,ChatGPTの調子があまりすぐれなかったので,Plusプログラムからは離脱したところだ。その代替として使っているのがPaLM2を用いたGoogle Bard である。ウェブブラウザにGoogle Chromeを使えば,Google検索でAI Chatモードを使えるとはいうのだが,これもなんだかイマイチだった。

そのBardに次の万博会場候補地に関する質問をしてみた。
Q:2025年の国際博覧会の大阪府内の候補地が夢洲を含めて7箇所あったそうですが,それはどこですか。

A:2025年の国際博覧会の大阪府内の候補地は、以下の7箇所です。
 ・彩都東部+万博記念公園(茨木市・大阪市)
 ・服部緑地(豊中市)
 ・花博記念公園鶴見緑地(大阪市)
 ・舞洲(大阪市此花区)
 ・大泉緑地(堺市)
 ・りんくう公園+りんくうタウン(泉佐野市・大阪市)
 ・夢洲(大阪市此花区)
2015年7月28日の検討会第4回会合では、上記7箇所が例示されました。その後、2016年5月の報道によると、候補地に夢洲も追加されました。最終的に、2025年の国際博覧会の開催地は、夢洲に決定しました。
ChatGPTだといきなり拒否される質問だが,下線部を除いてほぼ正しい答えをしてくれた。2015年に設置された大阪府の国際博覧会大阪誘致構想検討会第4回7月28日の会議で夢洲を除いた6箇所が検討されたのだ。議事録をみても全体に何だかやる気のなさがただよっている。

その後,IRを睨んだ大阪維新の推しで,地盤にも交通にも問題を抱えた夢洲が候補地に登場して選ばれた。それが今日の万博準備の遅れにつながっている。吉村知事は国に責任を丸投げして今にも逃げ出しそうだ。国が必死にテコ入れを図っているので多分何とかなるのだろう。まあ,最初からこの時代にこの場所で万博なんかを構想するなということだけど。


写真:夢洲の大阪・関西万博会場の雄姿(EXPO2025基本計画から引用)

2023年9月29日金曜日

再処理工場

福島第一原子力発電所からのALPS処理水の海洋放出を科学的に正当化する議論で出てくるのが,海外の原子力施設から放出されるトリチウムはもっと量が多いというのがある。

沸騰水型(BWR) < 加圧水型(PWR) < 重水炉(CANDU) < 再処理工場 の順にトリチウム放出量は多くなっている。2018年に閉鎖された英国のセラフィールド再処理工場で1500兆Bq/年(4.3gT2),現在も稼働中のフランスのラ・アーグ再処理工場では1.4京Bq/年(38gT2)も放出している。福島第1原発の22兆Bq/年の600倍を超える。

日本の六ヶ所再処理工場はもう潰れていたのかと思ったら,まだ続いていた(2024年上期竣工予定)。使用済み核燃料ウランを年間 800 t 処理することを目指している。高速増殖炉もんじゅが2016年に廃炉となり,そもそも核燃料サイクルがサイクルしないのだけれど。新型転換炉ふげんも2003年に運転が終了し廃炉作業中なので,MOX燃料を作ったとしてもプルサーマルで使いきれるのか,あるいはたんに,各原発の使用済み核燃料プールを空にすることが目的なのか。

六ヶ所再処理工場は,2006年度から2008年度にかけてアクティブ試験(試運転)を行い,トリチウムを太平洋に700兆Bq/年大気中に6.5兆Bq/年放出している。福島第1原発の比ではない。しかも,本格稼働した後の推定放出量は,トリチウム(海洋1.8京Bq/年,大気1900兆Bq/年),ヨウ素129が(海洋430億Bq/年,大気110億Bq/年)になるという。何だか気が遠くなりそうだ。今回はその露払い作戦に過ぎないのか?


図:六ヶ所村にある原子燃料サイクル施設日本原燃から引用)


2023年9月28日木曜日

理系五割

シンギュラリティサロンオンラインで「「理系を5割に」の衝撃。「分離融合の時代」は来るのか?」のタイトルで水野義之さんの話があった。

例によって,水野さんの蘊蓄オンパレードから始まるが,結論は大学における理系3割と文系7割の割合を逆転させよというものだった。一番気になったのは,理系を工学部と理学部だけに限定して定義しているように聞こえたところ。学校基本調査によれば,農学・保健・家政の一部も含めて学部学生の35%(男子39%,女子31%)が理系ということになる。

そもそもこの「理系を5割に」というスローガンは,内閣官房の教育未来創造会議によるものだ。2022年5月の「我が国の未来をけん引する大学等と社会の在り方について(第一次提言)」は次のように述べている。
例えば、現行の数理・データサイエンス・AI の習得目標に加えて、理工系分野の学問を専攻する女子学生の割合を7%から男子学生と同等の 28%程度に高めていくことや、成長分野への転換と併せて学生が複数専攻などにより文理の枠を超えた学修に取り組むことができる環境を整えることを前提とした上で、現在 35%にとどまっている自然科学(理系)分野の学問を専攻 する学生の割合について OECD 諸国で最も高い水準である5割程度を目指すなど、
まあ,そういうことです。OECD諸国は4割前後,最高が英国の45%,フランスは31%なので,全然無理する必要はないはずが,これでさらに混乱が加速しそうな雰囲気がただよう。教育未来創造会議第一次提言のポイントはわかりやすく整理されているが,全12ページのうち7ページが委員の人物紹介になっている。


図:2022年度大学学部の分野別在籍学生数


2023年9月27日水曜日

トリチウム(2)

トリチウム(1)からの続き

トリチウムについて,あるいはヨウ素129について,あちこちに書き散らかしている。このため,どこに何があるのかもよくわからない状態で困っている。そこで少しまとめておく。(1EBq = 100京Bq = 2.77kgT,  ∵1molT = 6.02×10^23×0.693/(12.3*3.15*10^7) = 1.08×10^15Bq)

地球上のトリチウム
 自然生成量 大気上層で宇宙線が生成:7.2京Bq/年(200gT/年)
 原発生成量 気圏放出:1.2京Bq/年(32gT/年) 水圏放出:1.6京Bq/年(44gT/年)
 核実験起源 1950-60年代:1.9垓Bq(530kgT)→ 2021:2000京Bq(55kgT)
 全存在量  自然生成との平衡量:130京Bq(3.6kgT)・・・7/{1-e(-0.693/12.3)} 
       核実験・原発起源等:5200京Bq(140kgT)

水圏のトリチウム
 排出基準 6万Bq/L
 海洋測定濃度 〜1Bq/L
 降水測定濃度 〜0.5Bq/L 降水総量 (日本全国 223兆Bq/年)
 飲料水規制基準 100Bq/L(EU),1万Bq/L(WHO)
 
大気中のトリチウム
 規制基準  5Bq/L
 測定濃度 HTO 〜10mBq/㎥

福島第1原発からのトリチウム(事故前)
 原子炉中の総量 3400兆Bq(9.4gT ≒ 63gHTO) → 1〜2割が海洋放出
 海洋放出実績 2.2兆Bq/年 (日本全国 380兆Bq/年)
 大気放出実績 1.5兆Bq/年 (日本全国 260兆Bq/年・・・推定値)

福島第1原発からのトリチウム(今後)
 第1原発サイト総量  2600兆Bq(7.2gT)
 汚染水タンク中の総量 830兆Bq(2.3gT ≒ 15gHTO)
 サブドレン放出濃度 660Bq/L(平均)〜1100Bq/L(最大)
 海洋放出基準 1500Bq/L (22兆ベクレル/年)
 大気放出基準 5Bq/L (なし)


[1]トリチウムの性質について(案)(多核種除去設備等処理水の取扱いに関する小委員会事務局)
[5]トリチウムの環境動態(百島則幸)
[6]環境水の中のトリチウム(宮本霧子)
[8]トリチウムの物性等について他(経済産業省資料)
[9]トリチウム分析法(文部科学省原子力安全課防災環境対策室)
 

2023年9月26日火曜日

iPhone15

9月13日にAppleからiPhone15シリーズとAppleWatchの発表があった。

Apple Eventのビデオは,飯村正彦さんの風に揺れる洗濯物のパンツのイメージから始まった。なんだろうと思っていると,途中でMother Natureが登場する小芝居があって,それもスルーすると見るべきところはあまりなかった。

仕方がないので,YouTubeで情報収集する。外部インターフェイスがLightningからUSB-Cに変わったというポイント以外の大きな特徴がよくわからないままだった。ましてやAppleWatchはまだ機能が完全ではない健康デバイスという位置づけから変化していない。YouTubeではガジェット系の皆さんが予約争奪戦に走っていた。まあそれが仕事なので引きずられてはいけない。

散歩の時にiPhoneズームがあると遠くの鳥を撮るときに少しだけ楽しいかもしれない。しかし,そのためにわざわざiPhone Pro Maxを買う気にはならない。そもそもアベノミクス円安のせいで値段が高すぎる。最新機種のドル建て価格が一定なのにも関わらず,円価格の上昇が数年続いている。

2020年7月にiPhone SE2を買ってから3年経過しているが,まだ十分働いているので,買い替えは等分先のことになりそうだ。2026年にはサポートが切れるので,それまでには何とかするのか。発売当初の2-3年は毎年機種更新していたが,これから死ぬまでに機種更新するのは残り1,2回ということか。

念のために,iPhone15とSE2の機能を比べてみたのが次の表だ。
iPhone15       iPhoneSE      
2023 Sep       2020 Apr      
139,800円        69,800円      

A16 Bionic       A13 Bionic     
3.5GHz          2.66GHz       
6コアCPU        6コアCPU      
5コアGPU        4コアGPU      
16コアNE        8コアNE       
256GB         128GB        

6.1インチOLED     4.7インチLCD    
2556×1179ピクセル    1334×759ピクセル  
460dpi          326dpi  
2,000,000:1       1,400:1       
1000ニト       625ニト       

48MPメイン|超広角   12MPシングル    
12MPフロント     7MPフロント     
ズーム .5× 1× 2×    ズーム 1×      

USB-C/USB2      Lightning/USB2   
FaceID        TouchID       
5G          4G/LTE       
BlueTooth5.3       BlueTooth5.0    
MagSafe        —         

20時間ビデオ     13時間ビデオ    
80時間オーディオ   40時間オーディオ  
147.6×71.6×7.8      138.4×67.3×7.3  
171g         148g        

少なくとも,この近所に5Gの電波が届くまではいらないかな。 


写真:iPhone15青 Appleのサイトより引用

2023年9月25日月曜日

水蒸気放出(3)

水蒸気放出(2)からの続き

今年の夏は例年以上に暑かった。ベランダの亀の水換え用に置いてある黒いプラスチックバケツの水も数日で何cmか蒸発しているようだった。そこで,福島第一原子力発電所にたまっている汚染水タンクも,フタを取ればトリチウム水HTOが自然に蒸発するのではないかと考えた。雨の日に水が溜まるのを防ぐため,各タンクには大きな黒い傘を設置しておくと晴の日には上昇気流で風を起せて一石二鳥だ。

このためには,水面から自然蒸発する水の量を評価する必要がある。調べてみると,水蒸気放出(1)で示したように,たかだか 0.2mm/day である。タンクの平均サイズが直径12m,高さ12mの円柱状だとすると,フタをとった場合のタンク1基の水面積は100㎡である。タンクが1000基あれば,総面積は10^5㎡,これが0.2mm/dayで減るので,蒸発する水は20㎥/日となる。一日に発生する汚染水が 90㎥-60㎥なので,これではとても無理だ。

次に考えたのが,霧だ。中谷芙二子さんごめんなさい。霧のいけうちのカタログでは,例えば(BIMV8022)1ノズルで20ミクロンの微霧を20L/時で放出できそうだ。2流体方式なので,空気が15㎥/時で同時に放出される。現在のタンクで空になったものを用意して,内円周上に100ノズル取り付けると,1タンクで,微霧状のトリチウム水の2㎥/時と空気が1500㎥/時,同時に放出される

現在のALPS処理水タンクから選んで密集しないように20タンク程度配置すれば,トリチウム水40㎥/時,空気30,000㎥/時が放出可能になる。各タンクの底部にはファンを設置して適当な速度で微霧を上方に流して拡散すればよい。素人目に設備費は,当初見積もられたボイラー式水蒸気放出(350億)の数%以内で収まるような気がする。運営費もわずかな電気代だけだ。たぶん周辺のトリチウム測定用設備費の方が高額だ。

微霧が滞留せずに素早く水蒸気になって拡散してくれるかどうかが問題だ。もちろん条件によるが,20-30ミクロン程度のものだと10秒のオーダーで蒸発しそうだ[1]。

そうなると問題は放射能の濃度だけ。20タンクのALPS処理後のトリチウム水の放射能濃度が,現在の水準14万Bq/Lと同じだと仮定する。夜を除いた1日を12時間として,微霧となるのはトリチウム水480㎥/日,空気36万㎥/日であり,放射能は6.7×10^10 Bq/日。雨日を除いた1年を300日として,20兆Bq/年の放出が可能になる。このときの水蒸気を含む放出空気の放射能は,20万 Bq/㎥となる。つまり,このミスト方式(微霧方式)水蒸気放出で海水放出と同程度のトリチウム放出処理ができるということだ。

排水のトリチウム濃度は6万Bq/Lという基準(ALPS処理水に対しては1500Bq/Lとした)があるが,気体については放出基準がなく,環境基準としての5Bq/L = 5000 Bq/㎥ だけになる。したがって,20万Bq/㎥のトリチウム水蒸気が放出後,敷地外に出るまでに40倍に拡散されれば,この環境基準は満たされる。

福島第一原子力発電所の敷地面積は350万㎡あって,タンク総面積は10万㎡程度(隙間を含めれば20万㎡程度か),今回の20タンクの面積は0.2万㎡だ。風向きさえ問題なければ敷地内での40倍拡散は十分いけそうな気はする。ただし,大気トリチウム濃度観測点は周辺にたくさん設ける必要があるだろう。

いまからでも方針を変えてはいかがでしょうか。

(注)タンクはもともと常に空にしてあるので,微霧生成装置の運用を停止している雨の日に水がたまってもそのまま排出してしまえばよい。射影半径6mの黒い傘はいらなくなった。仮に周辺地域における環境測定関係の設備費が海水放出の場合の50億から倍の100億になったとしても,トータルコストは十分安く実現できそうな気がする。2年もあれば実証実験も可能だろう。

(余)[6]の19pによれば,福島第一原発では,事故前(2010 年度実績)に2.2兆 Bq/年の海洋放出,1.5兆 Bq/年の水蒸気放出の実績が,福島第二原発からは,事故前に1.6兆 Bq/年の海洋放出,1.9兆 Bq/年の水蒸気放出の実績がある。この水蒸気放出は,使用済核燃料プール等から自然に蒸発した水蒸気に含まれるトリチウムが換気に伴 い大気に排出されるものだ。


図:ミスト方式(微霧方式)水蒸気放出タンクの構造案


[3]トリチウム水タスクフォース(汚染水対策処理委員会,2014.3.26)
[4]トリチウム水の処分に係る各選択肢の検討(汚染水対策処理委員会事務局,2015.6.5)



2023年9月24日日曜日

水蒸気放出(2)

水蒸気放出(1)からの続き

2020年に経済産業省の多核種除去設備等処理水の取扱いに関する小委員会は,ALPS処理水の5つの処分方法から,実績があり技術的に可能である現実的な選択肢として,水蒸気放出海洋放出をあげている。

はっきりした結論は文面にはないが,まとめには海洋放出のほうがよいというニュアンスがにじみ出ていた。海洋放出は91ヶ月,34億円,400㎡水蒸気放出は120ヶ月,349億円,2000㎡という比較がなされた。

なお,実際にスタートした海洋放出では放水トンネル関連設備に350億円必要となり,さらに漁業被害対応基金が800億円ほど追加になった。また海洋放出の期間も30-40年が見込まれることになる。ほとんど話が違うの世界ではないか。

2021年には,海洋放出が原案として確定していた[3]。水蒸気放出を排除したのは,影響が広範囲に及び,検証も難しいというような理由付けだった。なお,スリーマイルアイランド原子力発電所事故の水蒸気放出の実績は,8700トンのトリチウム水(24兆ベクレル)を2年間でボイラーで蒸発させたというものだ。検討のため参考にされたのはこの方式だが,自分にはボイラーで過熱して蒸気にするというのはかなり抵抗がある。

中国とロシアが海洋放出実施前の7月,日本政府に水蒸気放出を提案していたというニュースも流れた。大気中の放射性物質のモニタリングが海洋よりも難しいという理由で提案を拒否し,海洋放出に至った。向こうが容認する水蒸気放出ならば,水産物禁輸には至らなかったのかもしれない。

(付)フランスのラ・アーグ再処理工場からの年間トリチウム放出は,液体で1.6京ベクレル,気体で70兆ベクレルである。トリチウム水蒸気では,スルーマイルアイランドの6倍に達する。これは勝手に漏れてくるものかもしれない。

[2]アルプス処理水の処分(経済産業省)
[2]大気中トリチウム濃度の変遷と化学形態別測定(宇田達彦,田中将裕)
[]

2023年9月23日土曜日

水蒸気放出(1)

福島第一原子力発電所からのALPS処理水放出の代替案として,水蒸気放出の可能性があった。これを議論する前提として,福島県浪江の気候を調べた。このために,GPT-4,Bard,Perplexity,Bing,に尋ねるといずれもそれらしい答えが返ってきた。思わず,この4つのデータを平均して使おうかと思ったが,しばし思いとどまった。

正しいデータは,気象庁にあった。過去の気象データ検索の中に,各地のデータや平年値(過去三十年間の平均値)がおさめられている。浪江(福島県) 平年値(年・月ごとの値)は次のようになった。ただし,浪江のように湿度データがない地点もある。そこで,同じ,福島県浜通りの南側にある小名浜のデータで代替する。

これらのデータを使うと水面からの水蒸気の蒸発速度(mm/day)を求めることができる計算サイトがいくつかある。必要なインプットは,気温(℃),相対湿度(%),気圧(hPa->1013.25hPa),液温(℃),風速(m/s),水面の代表的な長さ(m->10m) である。

水温が気温と一致している場合と,水温が気温より5度高い場合を次の表に示す。

 気温湿度 *風速晴日 ≧40%蒸発量 蒸発量+
1月2.2582.022.50.150.30
2月2.7592.020.60.160.31
3月5.7622.219.50.190.38
4月10.7682.117.90.220.43
5月15.5761.816.50.220.51
6月18.8831.511.70.170.50
7月22.6861.311.40.170.53
8月24.0841.414.90.220.62
9月20.6801.412.20.220.56
10月15.1751.414.90.190.45
11月9.7691.619.10.170.38
12月4.7621.821.00.170.32
全体12.7721.7201.90.190.45

年平均しても,それぞれ 0.19mm/dayと0.45mm//day程度だった。実際には,もう少し大きいかもしれない。[1]によれば,福島の緯度 37.3度にある湖だと750mm/year ≒ 2mm/day 程度にはなるようなので。続く・・・。

[1]湖面や海面の蒸発(近藤純正)
[2]こぼれた水は何時間で乾くか(化学工学資料,伊東章)

2023年9月22日金曜日

フィンランドの教育(2)

フィンランドの教育(1)からの続き

有馬さんが国立大学法人化にゴーを出した1998年の学習指導要領(「生きる力」と基礎基本)が,ゆとり教育のピークだった。

2000年,2003年,2006年のOECD生徒の学習到達度調査(PISA)では,日本の読解力が急速にランクを下げていた。2003年PISA調査の結果から,学習意識や学校外での学習時間が低水準であること,学習離れ,習熟度の低い層の増加,学力格差などの課題が浮き彫りになった(PISAショック)。

これによって,2008年の学習指導要領(「生きる力」と思考力・判断力・表現力の育成)では揺り戻しが発生し,授業時数が10%増やされた。

このころ,PISAの読解力,数学リテラシー,科学リテラシーで上位を占めていたフィンランドが日本の改革のモデルとされ,多くの教育関係者がフィンランドを訪問していた。フィンランドは,教員の質も高く,修士課程の修了が必要とされていたことも,後に民主党政権時の教職大学院の制度設計に影響を及ぼした。

当時の自分は,人口規模が500万人のフィンランドの制度をそのまま日本に適応するのは難しいのではないかとやや冷ややかに横目で眺めていた。

フィンランドと日本のPISA順位を並べてみたのが次の図だ。横軸の1-7は2000年から3年ごとに2018年までのPISA調査に対応している。


図:PISA国際順位の推移(2000-2018,フィンランドと日本)

東アジア地域の新規参入などで,両国とも順位を下げた部分もあるが。フィンランドの数学リテラシーが顕著にランクを落としているのが目に付く。また日本の読解力は一時盛り返したが,再びランクを落としている。まあ,ともにパッとしなくなったのだ。

フィンランド幻想が消えたとはいえ,そこまで貶さなくてもいいのにとは思う。

2023年9月21日木曜日

フィンランドの教育(1)

フィンランドの教育・文化省が, 現状をレビューした報告を2023年1月に出していて,その英文要約を見ることができる。これをChatGPTで更に要約して,DeepLで翻訳したものを次に示す。

フィンランドの教育・文化省は、フィンランドの教育・文化セクターの過去数十年の変遷に焦点を当てた初の「ビルドゥング・レビュー」を発表した。主なポイントは以下の通り:

歴史的概観: 1950年代から1990年代初頭にかけて、フィンランドの教育部門は大きな成長を遂げた。総合学校、高等教育の改革、高等教育の拡大により、より多くのフィンランド人が教育を受けられるようになった。1990年代初頭には、図書館や芸術機関のネットワークも充実した。

1990年代の課題1990年代には教育資金が削減され、若者の教育レベルの上昇が止まり、学習成果が低下した。図書館もまた、様々な芸術分野への助成が減少し、利用者の減少という課題に直面した。

最近の動き: 2010年代半ば以降、就学前義務教育が導入され、義務教育が延長された。特にコロナウイルス危機の際には、高等教育の機会も拡大した。2030年までに研究開発資金を増強する必要性についてはコンセンサスが得られている。

学習成果フィンランドでは2000年代前半、特に読解力と数学の学習成果が急速に低下した。しかし、国際比較では、フィンランドの学生の成績は依然として良好である。社会的背景や性別による学習成果の格差が拡大している。

教育レベル: フィンランド国民の教育レベルは低下しており、1978年生まれは最も教育水準が高い。しかし、最近の傾向では、より若い年齢層がこのレベルを上回る可能性がある。

教職: フィンランドの教職は年々尊敬を集めており、フィンランドの教育制度の学術的教育と国際的評価が重要な役割を果たしている。

研究開発: 研究者の数は、特に企業部門で急増している。大学も研究範囲を広げている。

公共図書館: 1990年代には公共図書館への資金援助が減少し、図書購入の減少や貸出者数の減少につながった。

文化・芸術: 文化分野は、雇用の減少など困難に直面している。しかし、映画など様々な芸術の観客は増加している。

スポーツ: 成人のスポーツ参加率は依然として高いが、学童の有酸素運動能力は低下している。自治体によるスポーツ施設の建設は、年々変動している。

学資援助: 学生支援:1990年代の不況以降、学生支援にかかる費用は減少している。

これが,いまさらながらネットで取り上げられて(フィンランド教育は失敗だったとフィンランド政府が公式に認めました), フィンランド教育をディスる輪が広がっている。まあ,こういう自己分析ができるだけよいと思う。日本の文部科学省や政府は自分の政策が間違っていたとは絶対に認めないだろう。

[1]OECD生徒の学習到達度調査(PISA)(国立教育政策研究所)

2023年9月20日水曜日

古稀

Wikipediaによれば,
唐の詩人杜甫の詩・曲江(きょっこう)「酒債(しゅさい)は尋常行く処(ところ)に有り 人生七十古来稀なり」(酒代の付けは私が普通行く所には、どこにでもある(しかし)七十年生きる人は古くから稀である)が典拠。
杜甫(712-770)が47歳のときに詠んだ七言律詩「曲江」の全文は 次の通り 
朝 回 日 日 典 春 衣
毎 日 江 頭 尽 酔 帰
酒 債 尋 常 行 処 有
人 生 七 十 古 来 稀
穿 花 蛱 蝶 深 深 見
点 水 蜻 蜓 款 款 飛
伝 語 風 光 共 流 転
暫 時 相 賞 莫 相 違

春の衣を質入するのだからどの季節かと思えば,花に蝶が飛ぶ春だった。この詩の時代は盛唐(710-766),日本の奈良時代である。曲江は長安の東南隅に作られた池で現在は一面の畑というのは昔の話。

還暦は満60歳数えで61歳の祝いだが,古稀は満69歳,数えで70歳に対応する。で,本日9月20日空の日)で満70歳の自分にとっては古稀が終る日になる。しばらく前から気分はずっと70歳だったのでそれはそれでよし。


写真:曲江池遺跡公園(Trip.comから引用) 

2023年9月19日火曜日

テクタイト

隕石(小惑星)の衝突といえば,6600万年前にメキシコ湾ユカタン半島にチュチュラブクレータを作った10-15km級の衝突が思い浮かぶ。恐竜絶滅の原因ではないかとされているものだ。1908年のツングースカ大爆発も,50-60m級の隕石衝突が原因だとされ,また,2013年のチェリャビンスク隕石は,10m級の隕石である。


問題のテクタイトである。NHKのコズミックフロントの「ロスト・クレーター79万年前の天体衝突」で取り上げられていた。テクタイトとは,高速で衝突した巨大な隕石のエネルギーで蒸発帰化した地表の石や砂が上空で急冷して固まった天然ガラス(数cmの円形や水滴上のもの等)が広範囲に飛散したものである。

ただし,これが実際に見つかっている例は,北米(チェサピーク湾,3400万年前,隕石直径 数km),ヨーロッパ(ドイツ・チェコ,1400万年前,隕石直径 1.5km),アフリカ(コートジボアール,100万年前),アジア・オーストラリア(ラオス,79万年前,隕石直径 2km)の4つだけである。

最初の3つは,衝突の際にできたクレーターが見つかっているが,アジア・オーストラリアに広く分布したテクタイトの原因である衝突クレーターが未発見だった。それを探るというのが番組の趣旨で,国際研究チームに日本の千葉工業大学の地球学研究センターの多田隆治,多田賢弘チーム(80万年前に東南アジアで起きた小天体衝突の位置、規模、様式特定と環境への影響評価:科研費国際共同研究強化B)が参加していた。

その結果,衝突地点がラオスのボーラウェン高原にあって,新しい溶岩堆積層に覆われたものと考えられるようになった。この79万年前の衝突により,地域的な生物絶滅(急減少)が起こったらしい。ジャワ原人の絶滅にも影響しているとか。


写真:テクタイト(Wikipediaから引用)

千葉工大の地球学研究センターのページには松井孝典(まついたかふみ)さんが,センター所長として載っていた。彼は,2020年には4年間の任期で千葉工大の学長にも就任していたが,2023年2月に亡くなっていた。そのあたりのコメントくらいあってもよかったのに。千葉工大の次期学長は伊藤譲一だった。

2023年9月18日月曜日

開放型イヤフォン


先日のあさイチで,開放型イヤホン(ながら聴きイヤホン)が取り上げられていた。博多大吉先生が感動していた。そういえば,8ヶ月前の昔,NTTの技術でオープンイヤー型イヤホンができそうだという記事をみていたのをすっかり忘れていた。いつの間にか,それらしい何かが製品化されてテレビで紹介されていた。

カナル型やインナーイヤー型のように耳にイヤホンを入れるのではなく,小型スピーカを耳道の外側において,外部への音漏れを防ぎながら,外音を自然に聴きつつ,イヤホンの音も聞こえるというものだ。家人から話を聞いていないと叱られることもなく,宅急便や電話への対応も可能になる。

調べてみると,NTTはだめだったけれど,いくつかの代表的な機種がみつかった。
JVC Kenwood nearphone 11,775
16mmドライバ,本体7時間+ケース10時間,BT5.1

ambie sound earcuffs 15,339
?ドライバ,本体6時間+ケース12時間,BT5.2

OneOdeo OpenRock Pro 16,890
16.2mmドライバ,本体19時間+ケース46時間,BT5.2

SONY RingBuds 18,717
12mmドライバ,本体5.5時間+ケース12時間,BT5.2,マルチポイント

Oladance Wearable Stereo 20,980
16.5mmドライバ,本体10時間 | 16時間,BT5.2

Cleer ARC 22,800
16.2mmドライバ,本体7時間+ケース11時間,BT5.0 
Shokz OpenFit 24,880
?mmドライバ,本体7時間+ケース28時間,BT5.2 
Oladance OWS Pro 34,800
23*10mmドライバ,本体16時間+ケース42時間,BT5.3,マルチポイント

値段的に,JVCがいいかと思ったが,音質はいいが接点不良などの問題がありそうだ。SONYは,マルチポイントでBlueToothが接続できるメリットはあるが,普通のイアホンの真ん中に穴が空いてるだけなのでイマイチ。OpenRockはやや評判が悪い。CleerARCは2がクラウドファンディングしていて,これが製品化されればよいとの説も。

結局,Oldanceが良さそうなのだけれど,2万円もする。Oladance OWS Pro はさらにすごそうだが3万円を越える。ならば思い切って整備済品のAirPods Pro(第2世代)USB-Cを選びたい。ノイズキャンセリングも外部音取り込みも可能なのだ。問題は耳の負担感だけ。

なんだかんだいって,多少不便だとしても有線のEarPods(2,780円)が一番コストパフォーマンスが高い。外音取り込みが必要ならば片耳外せば良いし。マルチポイント接続が必要なら,2つあるEarPodsを片耳づつ別のソースにつないで聴けば良いという,たいへん貧乏性の結論に落ち着きそうだ。


写真:Oladance のOWS Proの機能(アマゾンから引用)