ついでに,電場を取り除いて,導体球に電荷を与えて導体球表面に球対称一様電荷分布が生ずる状況を考える。
先ほどと同様に,観測点の位置ベクトル$\bm{r}$方向に$z$軸をとる。球対称性から$x$軸は自由に設定することができる。この結果,電位は次式で与えられる。
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2}{4\pi\varepsilon_0} \int \dfrac{ \sin \theta' d\theta' d\phi'}{ \sqrt{r^2+R^2-2rR \cos \theta'}} = \dfrac{\sigma R^2}{2\varepsilon_0} \int \dfrac{ \sin \theta' d\theta'}{ \sqrt{r^2+R^2-2rR \cos \theta'}}$
再び,$\alpha = r^2+R^2 $,$\beta = 2 r R\ $と置いて,$\sqrt{\alpha -\beta}=| r-R |,\ \sqrt{\alpha + \beta}= r + R\ $である。$t = \cos \theta'$と変数変換して,$ dt = -\sin \theta' d\theta' \ $ なので,
$\displaystyle V(\bm{r}) = \dfrac{\sigma R^2}{2 \varepsilon_0} \int_{-1}^1 \dfrac{dt}{\sqrt{\alpha - \beta t }} = \dfrac{\sigma R^2}{2 \varepsilon_0} \Bigl\lvert \dfrac{-2}{\beta} \sqrt{\alpha - \beta t}\Bigr\rvert_{-1}^1 = \dfrac{\sigma R}{2 \varepsilon_0 r}(\sqrt{\alpha+\beta}-\sqrt{\alpha-\beta})$
$\displaystyle = \dfrac{\sigma R}{2 \varepsilon_0 r} (r+R -|r-R|)$
したがって,$Q=4\pi R^2 \sigma$と置くと,次のように正しい静電ポテンシャルが得られた。
$\displaystyle V(\bm{r}) = \dfrac{Q}{4\pi \varepsilon_0 R}\quad (r<R)$
$\displaystyle V(\bm{r}) = \dfrac{Q}{4\pi \varepsilon_0 r} \quad (r>R)$
0 件のコメント:
コメントを投稿