講義の内容は,電磁気学と現代物理学の範囲だ。以前,電磁気学の授業を担当したとき,静電気については,電荷分布から電場と電位(静電ポテンシャル)を導くという展開だった。時間の関係もあって,導体の概念や関連部分は飛ばしてしまっていた。これはだめです。
外部から一様電場をかけた導体球内部には電場が存在せず,電位は一定になる。これを簡単に求めるためには,導体球の中心に電気双極子を置いて,外部電場と重ね合わせるのが普通の教科書の手順だ。砂川さんの理論電磁気学では静電ポテンシャルのルジャンドル展開を使ってもっとスマートに導出していた。
このとき,導体表面には球の中心Oを原点とし,電場方向を結ぶ座標軸からの角度の余弦に比例する電荷が分布することになる。それではこのような電荷分布から一様な電場が直接計算できるはずだが,残念ながら探してもその計算を具体的にしている資料はみつからない。
この計算では表面電荷分布を表す2つの角度について積分する必要がある。1つの変数での積分は楕円積分になるが,これをさらに積分するのはちょっと無理そうだ。しかたがないので,数値積分してみると,外部電場方向に垂直な等電位面が現れた。
f[r_, u_] := NIntegrate[ Cos[t] Sin[t]/
Sqrt[r^2 + 1 - 2 r*(Sin[u] Sin[t] Cos[s] + Cos[u] Cos[t])],
{t, 0, Pi}, {s, 0, 2 Pi}] / (r*Cos[u])
ここで,導体球の半径をR=1として,内部の点を(r sin u, 0, r cos u ),導体球面上の電荷要素の位置を (R sin t cos s, R sin t sin s, R cos t ) として,変数tと変数sで積分している。電荷分布は σ cos t で,積分結果を内部点のz座標 r cos u で割った。この結果が,内部点の座標変数 r, u を変えても一定になったので,等電位面が出現したことになる。
図:一様電場中の導体球(前野昌弘さんのテキストから引用)
0 件のコメント:
コメントを投稿