2023年10月27日金曜日

鏡像法(3)

鏡像法(2)からの続き

前回は,導体球が接地されている状況を考えた。$z$軸上の電荷$+q$の鏡像電荷$-q'$に相当する電荷は導体球表面に分布しており,これを鏡像電荷が代表して表わしていることになる。

次に,接地されておらず,電荷を持たない導体球を考える。導体球の中心を通る$z$軸上の点A$(0,0,d)$に電荷$+q$を置くと,静電誘導によって導体球表面には偏った電荷分布が生ずるとともに,球表面の電位は一定になる。ただし,この電荷分布を球表面について寄せ集めるとゼロになっている。

この状況を表現するためには,前回のモデルに加えて,導体球の中心に$+q'$相当の電荷を置けば良い。これによって,導体球の合計電荷はゼロになると同時に,導体球表面での電位一定の条件が満足されることになる。実際には,これらの電荷は導体球表面に分布しているのである。

図1:接地しない導体球と鏡像電荷

原点を中心とする半径$R$の接地していない導体球に対して,電荷$+q$とこれによって生ずる鏡像電荷$-q'$,$+q'$がつくる導体球外の電位の式は次のようになる。

$V(\bm{r}) = \dfrac{1}{4\pi\varepsilon_0}\Bigl\{ \dfrac{+q}{\sqrt{r^2+d^2-2 r d \cos\theta}} + \dfrac{-q'}{\sqrt{r^2+d'^2-2 r d' \cos\theta}} + \dfrac{+q'}{r} \Bigr\}$

接地しない導体球表面の誘導電荷密度は,$\sigma(\theta) = -\varepsilon_0 \dfrac{\partial V(r)}{\partial r}\Biggr |_{r=R}$で与えられる。
したがって,$\sigma(\theta) = \dfrac{1}{4\pi} \Bigl\{\dfrac{+q (r-d \cos\theta)}{(r^2+d^2-2 r d \cos\theta)^{3/2}} + \dfrac{-q' (r - d' \cos\theta )}{(r^2+d'^2-2 r d' \cos\theta )^{3/2}} + \dfrac{+q'}{r^2} \Bigr\}\Biggr |_{r=R}$
また,これによる導体球面上の全電荷は,$\displaystyle \int_0^{2\pi} \int_0^\pi \sigma(\theta) R^2 \sin \theta d \theta  d\phi$,すなわち$\ t = \cos\theta\ $とおけば,$\displaystyle 2\pi R^2 \int_{-1}^{1} \sigma(t) \bm{dt} $で与えられる。各項を$\ q_1,\ q_2,\ q_3 \ $とすると,$d>R>d'$なので,

$\displaystyle q_1 = \dfrac{q R^2}{2} \int_{-1}^{1} \dfrac{R - d\ t}{(R^2+d^2 - 2 R d\ t)^{3/2}} \bm{dt}$
$\displaystyle =  \dfrac{q R^2}{2} \Bigl [ \dfrac{R - d\ t }{Rd (R^2+d^2-2R d\ t)^{1/2}} \Bigr ]_{-1}^{1}- \dfrac{q R^2}{2} \int_{-1}^1 \dfrac{ -d}{Rd (R^2+d^2-2R d\ t)^{1/2}} \bm{dt}$
$\displaystyle =  \dfrac{q R^2}{2} \Bigl [ \dfrac{1}{Rd}\Bigl\{ \dfrac{R-d}{d-R}-\dfrac{R+d}{d+R} \Bigr\}- \dfrac{q R^2}{2} \Bigl [ \dfrac{ d}{(Rd)^2} (R^2+d^2-2R d\ t)^{1/2} \Bigr ]_{-1}^{1}$
$\displaystyle =  -\dfrac{q R}{d} - \dfrac{q}{2d} \Bigl\{ (d-R)-(d+R) \Bigr \} = -\dfrac{q R}{d} +\dfrac{q R}{d} = 0$

$\displaystyle q_2 = \dfrac{-q' R^2}{2} \int_{-1}^{1} \dfrac{R - d'\ t}{(R^2+d'^2 - 2 R d'\ t)^{3/2}} \bm{dt}$
$\displaystyle =  \dfrac{-q' R^2}{2} \Bigl [ \dfrac{R - d'\ t }{Rd' (R^2+d'^2-2R d'\ t)^{1/2}} \Bigr ]_{-1}^{1} + \dfrac{q' R^2}{2} \int_{-1}^1 \dfrac{ -d'}{Rd (R^2+d'^2-2R d'\ t)^{1/2}} \bm{dt}$
$\displaystyle =  \dfrac{-q' R^2}{2} \Bigl [ \dfrac{1}{Rd'}\Bigl\{ \dfrac{R-d'}{R-d'}-\dfrac{R+d'}{R+d'} \Bigr\} + \dfrac{q' R^2}{2} \Bigl [ \dfrac{ d'}{(Rd')^2} (R^2+d'^2-2R d'\ t)^{1/2} \Bigr ]_{-1}^{1}$
$\displaystyle =  \dfrac{q'}{2d'} \Bigl\{ (R-d')-(R+d') \Bigr \} = -q'$

$\displaystyle q_3=\dfrac{q' R^2}{2}\int_{-1}^{1} \dfrac{1}{R^2} \bm{dt}= q'$


図2:z軸からの角度 t=cos θの関数としての球表面電荷密度









0 件のコメント: