三項間漸化式からの続き
前回の問題を次のように修正する。2次方程式$\ x^2-p x + q = 0\ $の解を$\alpha, \beta$として,$a_n = \alpha^n +\beta^n$と定義する。ただし,$a_0=2,\ a_1 =\alpha + \beta = p,\ a_{-1}=\frac{1}{\alpha}+\frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{p}{q}$である。
このとき,次の漸化式,$a_{n+1}=p\ a_{n}-q\ a_{n-1}, \ (n=0,1,2 \cdots)$が成り立つ。
また,数列の一般項は $a_n = \alpha^n + \beta^n = \Bigl( \dfrac{p + \sqrt{p^2-4q}}{2} \Bigr)^n + \Bigl(\dfrac{p - \sqrt{p^2-4q}}{2} \Bigr)^n$ で与えられる。
これを3次方程式に拡張すると次のようになる。3次方程式$\ x^3-p x^2 + q x -r = 0\ $の解を$\alpha, \beta, \gamma$として,$b_n = \alpha^n + \beta^n + \gamma^n$と定義する。ただし,$b_0=3,\ b_1 =\alpha + \beta + \gamma = p,\ b_{-1}=\frac{1}{\alpha}+\frac{1}{\beta} +\frac{1}{\gamma} = \frac{\alpha \beta + \beta \gamma + \gamma \alpha}{\alpha \beta \gamma} = \frac{q}{r}$である。
このとき,漸化式は,$b_{n+2}=p\ b_{n+1}-q\ b_{n}+r\ b_{n-1}, \ (n=0,1,2 \cdots)$となる。
さらに,数列の一般項は $b_n = \alpha^n + \beta^n + \gamma^n$なので,基本対称式の値,$p=\alpha+\beta+\gamma,\ q=\alpha \beta + \beta \gamma + \gamma \alpha,\ r=\alpha \beta \gamma$の多項式になる。2次方程式の場合のように,3次方程式の一般解を代入してもよいが,非常に煩雑な表現になってしまい,Mathematicaを持ってしてもExpandとSimplifyを組み合わせて n=8で行き詰まってしまった。もちろん,漸化式を使えば大丈夫なのだが。
a = x /. Solve[x^3 - p x^2 + q x - r == 0, x];
b[n_] := a[[1]]^n + a[[2]]^n + a[[3]]^n
Table[Expand[b[i]] // Simplify, {i, 1, 8}]
{p, p^2 - 2 q, p^3 - 3 p q + 3 r, p^4 - 4 p^2 q + 2 q^2 + 4 p r, p^5 - 5 p^3 q + 5 p q^2 + 5 p^2 r - 5 q r, p^6 - 6 p^4 q + 9 p^2 q^2 - 2 q^3 + 6 p^3 r - 12 p q r + 3 r^2, p^7 - 7 p^5 q + 14 p^3 q^2 - 7 p q^3 + 7 p^4 r - 21 p^2 q r + 7 q^2 r + 7 p r^2, p^8 - 8 p^6 q + 20 p^4 q^2 + 8 p^5 r - 32 p^3 q r + 24 p q^2 r + 2 q (q^3 - 4 r^2) - 4 p^2 (4 q^3 - 3 r^2)}