2020年5月10日日曜日

検察庁法改正案に反対する

twitterでのハッシュタグ署名「#検察庁法改正案に抗議します」380万件を越えたようだ(NHK 2020.5.10 17:00ごろの記事にて※)。

森友−加計−桜などの一連の流れの総決算で,自民−公明−維新が国会の強行突破を図っている。ひどい話である。制度としても非常に大きな問題をかかえてしまう。

検察庁法検察庁の組織と検察官の任免の手続きを定めている。今回の改正案は,国家公務員法等の一部を改正する法律案の中にあって,その問題点のキモは,「役職定年を導入し,検事正については法務大臣の判断,次長検事および検事長については内閣の判断で,個別に役職定年を延長することができるようにしたところ(なお,現在の検察庁法には役職定年の制度はない)」のようだ。
第四条 検察庁法(昭和二十二年法律第六十一号)の一部を次のように改正する。
・・・
法務大臣は、前項の規定にかかわらず、年齢が六十三年に達した検事正の職を占める検事について、当該検事の職務の遂行上の特別の事情を勘案して、当該検事を他の職に補することにより公務の運営に著しい支障が生ずると認められる事由として法務大臣が定める準則(以下この条において単に「準則」という。)で定める事由があると認めるときは、当該検事が年齢六十三年に達した日の翌日から起算して一年を超えない範囲内で期限を定め、引き続き当該検事に、当該検事が年齢六十三年に達した日において占めていた職を占めたまま勤務をさせることができる。
法務大臣は、前項の期限又はこの項の規定により延長した期限が到来する場合において、前項の事由が引き続きあると認めるときは、準則で定めるところにより、これらの期限の翌日から起算して一年を超えない範囲内(その範囲内に定年に達する日がある検事にあつては、延長した期限の翌日から当該定年に達する日までの範囲内)で期限を延長することができる。
・・・
内閣は、前項の規定にかかわらず、年齢が六十三年に達した次長検事又は検事長について、当該次長検事又は検事長の職務の遂行上の特別の事情を勘案して、当該次長検事又は検事長を検事に任命することにより公務の運営に著しい支障が生ずると認められる事由として内閣が定める事由があると認めるときは、当該次長検事又は検事長が年齢六十三年に達した日の翌日から起算して一年を超えない範囲内で期限を定め、引き続き当該次長検事又は検事長に、当該次長検事又は検事長が年齢六十三年に達した日において占めていた官及び職を占めたまま勤務をさせることができる。
内閣は、前項の期限又はこの項の規定により延長した期限が到来する場合において、前項の事由が引き続きあると認めるときは、内閣の定めるところにより、これらの期限の翌日から起算して一年を超えない範囲内(その範囲内に定年に達する日がある次長検事又は検事長にあつては、延長した期限の翌日から当該定年に達する日までの範囲内)で期限を延長することができる。 
などのあたりだろうか。


図 twitterndにみられるtwitter改竄の痕跡?(左ビフォアー,右アフター)

※その後400万件を越えたあたりで, https://twittrend.jp からは消されてしまったようだ。あいかわらず,twitter.jpの恣意的・政治的な運営は本当にひどいことになっている。その痕跡が図の地域別の一部に残っているという指摘があった。

[1]検事長の勤務延長に関する閣議決定の撤回を求め、国家公務員法等の一部を改正する法律案に反対する会長声明あらためて検察庁法の一部改正に反対する会長声明(日本弁護士連合会)
[2]我が国の検察制度の特色(検察庁)
[3]いったい検察庁法改正案の何に抗議しているのか(徐東輝)
[4]安倍首相による 検察,警察の私物化−新型コロナ危機の陰で進む民主主義・法の支配の崩壊(小西洋之)
[5]「#検察庁法改正案に抗議します」をめぐって知っておいてほしいこと(山尾志桜里)
[6]twittrend(各地域のついっトレンド)
[7]twitter trending hashtag (こちらは改竄されておらず,約550万件に到達)

2020年5月9日土曜日

ハナノナ

このところCOVID-19の話ばかり書いてきたのでちょっと食傷気味である。

今日は別の話題です。「無料でカメラを向けた花の名前を即座にAIが教えてくれるアプリハナノナを使ってみた」という記事があったのでさっそくiPhoneにインストールしたところ,なかなかすごいのだった。ベランダのムラサキカタバミを早速言い当てた。

千葉工業大学のステアラボ(人工知能・ソフトウェア技術研究センター)で2017年に開発されたものらしい。ウエブサービスハナノナとして始まった。最近,認識できる花の種類のが770種類にまでアップデートされ,iPhoneアプリも登場した。この手のアプリはのどから手が出るほどほしかった。まあ,ないことはなかったのです。これまでに,京都大学発祥?のいきものコレクションアプリBIOMEを使ったこともあるのだけれど,機能を欲張りすぎた割には精度がいまいちで,アプリ画面のこやしになっていた。

その点,ハナノナは単純な機能がよいのである(草木にも拡張してほしい)。この調子でトリノナ(鳥類),ムシノナ(節足動物・両生類・爬虫類),クモノナ(雲です),ホシノナ(☆です),イシノナ(岩石鉱物),トモノナ(ホ乳類),ウオノナ(魚類・水生生物)など作っていただけるとうれしいなあ。これらができた後でモノノナ(万物)に統合されるのはOKです。これで小学校の理科はOKです。


図 本日の朝の散歩におけるハナノナの成果の一部(2020.5.9撮影)

追伸:モノノナのイメージが出てきた。目に映るものの名前をできる限り知りたい(デイリーポータル,2020.05.22)

2020年5月8日金曜日

小田垣さんのSIQR

朝日新聞に,九州大学名誉教授の小田垣さんの計算として「PCR検査を倍にすれば、接触「5割減」でも収束可能?」という記事がでた。twitterでも注目を集めていた。

小田垣さんのホームページにその論考があった[1]。SIQRモデルということで,感染者を2段階に分けていた。我々のSIIDR2モデルと本質的に同じではないか。感受性保持者S(t)から直接我々の重症患者I2(t),すなわち小田垣さんの隔離感染者Q(t)に遷移する項があって,ここは違うのだが,議論が始まる前の段階でこの項を落としているので結局同じです。違うのはこちらには死亡数D(t)への遷移を含んでいることくらいである。

そこで両方のモデルで使用しているパラメタを比較してみた。左が小田垣さんのSIQR,右が我々のSIIDR2である。
\begin{equation}
\begin{aligned}
N\beta \quad (0.07) &= \beta \quad (0.4-0.6)  \\
p \quad (0.096) &= \dfrac{1}{\alpha_2} \quad (0.04) \\
\gamma \quad (0.04) &= \dfrac{1}{\alpha_1} \quad (0.16) \\
\gamma \quad (0.04) &= \dfrac{1}{\gamma_1}\quad  (0.064) \\
noparameter (0) &= \dfrac{1}{\gamma_2}\quad   (0.00267) \\
\end{aligned}
\end{equation}
感染率の$\beta$が一桁違うことがわかる。その他はファクターが異なるくらいである。I(t)からR(t)への遷移時間とQ(t)からR(t)への遷移時間が同じとしていることもやや疑問に感じる。また,小田垣氏は論考の中で,基本再生産数(実効再生産数)は$N\beta/p$でなく$N\beta/(p+\gamma)$とすべきだと主張しているが,これはどうなのだろうか。

とりあえず,感染初期のS(t)=Nのときにあてはめて,接触5割減の議論に持ち込んでいる部分は興味深いが,実際にこのパラメータを使って日本の感染データの全体像を説明できるのだろうか。我々のコードを少し修正して彼らのモデルとパラメタを使った計算を再現してみた(初期値の細かな調整は我々のモデルを前提としているがとりあえずはそこはそのままにしておく)。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
using DifferentialEquations
using ParameterizedFunctions
using Plots; gr()

sky = @ode_def SIQR_model begin
  du0 = 1 # u0:time
  du1 = -β*u1*u2/n # u1:Noimmunity(Susceptible)
  du2 = β*u1*u2/n -u2/α2 -u2/α1 # u2:(Infected)
  du3 = u2/α2 -u3/γ1 # u3:(Quarantined)
  du4 = u3/γ2 # u4:Dead(not in use)
  du5 = u2/α1 +u3/γ1 # u5:Recovered
  du6 = u2/α2 # u6:Accumulated Quarantined
  du7 = u3/γ1 # u7:Accululated Recovered
end n α1 α2 β γ1 γ2 λ τ

function epidm(β,ν,λ,τ,T)
n=10000.0 #total number of population
α1=1/0.04   #5.0/0.8 #latent to recovery (days/%)
α2=1/0.096  #5.0/0.2 #latent to onset (days/%)
β=0.07  #0.45  #infection rate (/day・person)
γ1=1/0.04   #15.0/0.96 #onset to recovery (days/%)
γ2=15.0/0.04   #onset to death (days/%) (not in use)
u0 = [0.0,n-11ν,4ν,2ν,0.0,5ν,ν,0.0] #initial values
p = (n,α1,α2,β,γ1,γ2,λ,τ) #parameters
tspan = (0.0,T) #time span in days
prob = ODEProblem(sky,u0,tspan,p)
sol = solve(prob)
return sol
end

#japan-data(start=3/1)
xj=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,
56,57,58,59,60,61,62]
yj=[0.0190,0.0202,0.0213,0.0225,0.0252,0.0277,0.0324,
0.0361,0.0387,0.0408,0.0451,0.0492,0.0536,0.0568,
0.0619,0.0646,0.0658,0.0658,0.0693,0.0754,0.0790,
0.0830,0.0864,0.0895,0.0947,0.103,0.110,0.119,
0.134,0.148,0.155,0.173,0.189,0.208,0.232,
0.260,0.290,0.310,0.338,0.378,0.424,0.477,
0.536,0.576,0.607,0.643,0.681,0.728,0.777,
0.822,0.853,0.882,0.912,0.946,0.983,1.018,
1.046,1.062,1.078,1.099,1.118,1.133,1.154]
zj=[0.040,0.048,0.048,0.048,0.048,0.048,0.048,
0.048,0.056,0.071,0.095,0.119,0.151,0.167,
0.175,0.190,0.222,0.222,0.230,0.262,0.278,
0.286,0.325,0.333,0.341,0.357,0.365,0.389,
0.413,0.429,0.444,0.452,0.452,0.516,0.548,
0.556,0.579,0.635,0.643,0.675,0.698,0.746,
0.778,0.810,0.865,0.944,1.079,1.175,1.222,
1.278,1.357,1.476,2.198,2.278,2.516,2.651,
2.762,2.786,2.984,3.087,3.294,3.429,3.603]/100
plot(xj,yj,st=:scatter,label="Confirmed-japan")
#plot!(xj,zj,st=:scatter,label="Deaths-japan")

β=0.07
ν=0.01
T=60

@time so=epidm(β,ν,λ,τ,T)
#plot!(so,vars=(0,2))
#plot!(so,vars=(0,3))
plot!(so,vars=(0,4))
#plot!(so,vars=(0,5))
#plot!(so,vars=(0,6))
plot!(so,vars=(0,7))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

結果は以下の通りである。確かに初期の段階ではデータを説明しているが,その後の振る舞いは説明できない。このモデル(のパラメタ)はあまりよろしくないのかもしれない。

図 日本の新規感染数累計の推移(3/1-5/1)u6をデータと比較する


[1]新型コロナウイルスの蔓延に関する一考察(小田垣孝,2020.5.5)
[2]隔離と市中の感染者を分ける SIR モデル(佐野雅己,2020.4.29)
[3]3.11以後の科学リテラシー No. 89(牧野淳一郎,2020 科学5月号)
[4]感染症の数理シミュレーション(8)(2020.3.15)

2020年5月7日木曜日

中野さんのK値

阪大の杉山清寛さんのFacebookから,RCNPの中野貴志さん(ペンタクオークでおなじみ)がCOVID-19の収束状況を判定するK値というのを考案しているという情報がみつかった。あれ,こちらで計算していたものと本質的に同じ量ではないか。彼のK値は次式で与えられる[2]。総感染者数は我々の(というか普通報道されている)新規感染数累計(Confirmed)のことだ。3月の末に,新規感染数累計の増倍率という記事[1]を書いていた(忘れていた)。

    K = 1 - (1週間前の総感染者数) / (当日の総感染者数)

こちらで計算を続けていたのは,r = (当日の総感染者数)/ (1週間前の総感染者数) = 1/(1-K) である。最近1に収束してきて(下に有界な単調減少数列)おもしろい情報がとれないので更新を停止したところであった。なるほど,こうすれば,初期段階の感度は悪いが,収束段階の感度はよくなる。また,中野さんの最近の論考[3]ではさらに考察が進化していた。まあ,物理屋さんがやるとだいたいこういう発想になるのだろう。



図1 アジアの新規感染数累計増倍率の推移(2020.3.1-5.4)


図2 ヨーロッパの新規感染数累計増倍率の推移(2020.3.9-5.4)

その3月下旬から4月にかけて日本だけが他の国と違う振る舞いを見せていてどきどきしたが,やがて収まった。逆にシンガポールの異常を発見したのもこれを観察していたときだった。

[1]新規感染数累計の増倍率(2020.3.31)
[2]COVID-19 感染状況の推移について(中野貴志,2020.4.19)
[3]K 値で読み解く COVID-19 の感染状況と今後の推移(中野貴志・池田陽一,2020.5.6)
[4]新型コロナウイルス感染症(COVID-19)について(吉森保,2020.5.10)

2020年5月6日水曜日

米国の集団免疫率(3)

米国の集団免疫率(2)からの続き

タイトルはもう変更したほうがいいかもしれない。というのも,抗体検査の結果,ニューヨーク州では12.3%が抗体を持っている(感染済という結果がでているからだ。こちらの結果とはほぼ1桁違うので,我々のモデルの前提や仮定のどれかががまったく間違っているのではないか。しかし,モデルを検討する余力がないので(遠隔授業の準備で手いっぱい),そこは放置したまま,米国の新しいデータに基づいたパラメタ推定を行う。というのも,これまでの6万人から6.5万人という発表に代わり,再び死亡者が10万人を越えるという予想が出ているからだ。前回と同様に,HEMLのCOVID-19 projections のページを見れば,確かに米国全体の死亡数は8月には13.4万人になりそうだとある。

前回同様のSIIDR2モデルで計算する。使用するWHOのデータ(人口1万人当り)はこれ。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ya=[0.014,0.021,0.030,0.038,0.051,0.051,0.051,
0.106,0.107,0.215,0.317,0.462,0.462,0.958,
1.280,1.576,1.929,2.074,2.587,3.136,3.722,
4.268,4.953,5.684,6.483,7.335,8.310,9.327,
10.13,11.03,11.99,12.93,14.00,14.96,15.92,
16.81,17.55,18.33,19.20,20.19,21.10,21.96,
22.80,23.58,24.31,25.19,26.12,27.29,28.28,
29.16,29.85,30.47,31.42,32.39,33.20,34.16]
za=[0.0006,0.0008,0.0009,0.0011,0.0012,0.0012,0.0012,
0.0018,0.0018,0.0030,0.0046,0.0061,0.0061,0.0122,
0.0143,0.0204,0.0268,0.0301,0.0377,0.0506,0.0641,
0.0728,0.0865,0.117,0.146,0.178,0.213,0.254,
0.290,0.329,0.387,0.445,0.504,0.562,0.620,
0.667,0.712,0.785,0.856,0.922,0.984,1.038,
1.089,1.141,1.216,1.284,1.337,1.402,1.456,
1.492,1.532,1.591,1.679,1.742,1.792,1.842]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

パラメタはこれ,前回と少し変えている。
#β=0.61,ν=0.12,λ=49,τ=16,α2=5.0/0.20,γ2†=15.0/0.10 

結果はこれ,確かに15〜16万人くらいになりそうだ。
図 米国の感染カーブ(u3=重症感染数,u4=死亡数,u6=新規感染数累計,1万人当)

P. S. 日本でも,神戸の病院の外来患者の約3%に新型コロナウイルス感染症の抗体が検出されたとある。なかなか大きな数字だ。これが1%だとしても,大都市部の数十万人が感染済みということ。

2020年5月5日火曜日

CFR(致命率)(1)

一つの集団におけるある感染症の致命率(Case Fatality Rate)とは,その集団における感染者数に対する,その感染症が原因となる死亡者数の比率である。COVID-19における各国の致命率の時間推移が次のサイトMotality Risk of COVID-19 (Our World in Data)にある。そこでいくつかの代表的な国々を選んで図示してみた。

図 各国のCFRの推移(3/20-5/2)

アジアが欧米に比べて明らかに低いのは何故かという問題提起があったが,これをみれば,米国と中国は同じオーダーである。ここに載せていない,台湾,香港,シンガポールが非常に小さいのは確かである。

2020年5月4日月曜日

新型コロナ感染症の時系列

自分で計算できる実効再生産数からの続き

高橋健太郎さんが12日シフトで説明できるということだったので,これまでの経緯を時系列でまとめ,前回の実効再生産数の計算値の日付を12日だけ引き算した日時にあてはめてならべてみたものを,日付[数値]として埋め込んだ表を作った。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1/30 新型コロナウイルス感染症対策本部の設置
2/04 ダイヤモンドプリンセス横浜で再検疫
2/16 [1.0]
2/19 ダイヤモンドプリンセス下船開始
2/21 [2.1]
2/26 全国的イベント自粛(Perfume EXILE)
2/29 [1.1]
3/01 ダイヤモンドプリンセス全員下船
2/28 北海道知事の緊急事態宣言
3/02 要請に基づく全国学校休業(-春休み)
3/05 [1.0]
3/08 大相撲無観客場所初日
3/13 [2.1]
3/14 新型インフルエンザ等対策特別措置法改正
3/17 特措法にもとづく新型コロナウイルス感染症対策本部へ
3/20 [1.7]
3/24 東京五輪を2021年に延期
3/25 東京都重要局面発言/春休み
3/28 [1.5]
3/29 志村けん
3/31 [1.0]
4/05 [1.0]
4/07 7都府県に特措法による緊急事態宣言(-5/6)
4/16 [0.5]
4/16 全国に特措法による緊急事態宣言(-5/6)
5/04 全国の緊急事態宣言延長(-5/31)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
細かいところまで対応させて解釈するのはきびしいかもしれない。

[1]新型コロナウイルス(COVID-19)への正しい理解をするためのオンライン学習教材について(島根県立出雲高等学校,大日康史・菅原民枝)

2020年5月3日日曜日

自分で計算できる実効再生産数

新型コロナウイルス感染症専門家会議が5月1日に出した提言・状況分析における実効再生産数のグラフについてあれこれいわれている。こういう場合は自分で確かめておよその感じをつかみたい。いやいやこんな緊急事態に素人が世情を惑わせるよけいな計算をしてはいけないという声も,かつてよけいなことをしまくったその分野の素人(別の分野の専門家)から聞こえてくるのである。ここでComputational Thinkingを標榜するのであれば,計算の自由(Freedom of Computation)を宣言しておきたい。もちろんそのためには最低限データとアルゴリズムを明らかにしておく必要がある(専門家会議はそうしていない)。

①使用するデータ:日本の新規感染数の日次統計(WHOに報告されたもの)WHOのSituation Reportsのデータ(確定感染者数 Confirmed)は次のようになった。ただし,2月22日から5月1日まで(WHOが公表している日付を基準としたもの)の70点のデータである。
{12,27,12,13,7,22,24,20,9,15,14,16,33,32,59,48,33,26,54,52,55,41,64,34,15,15,44,77,46,50,43,39,65,98,96,112,194,173,87,225,206,233,303,351,383,252,351,511,579,658,743,507,390,455,482,585,628,566,390,367,378,423,469,441,353,203,191,276,236,193}

②使用するモデル:単純なSIRモデルを仮定し,感染が人口の数%を越えて拡がっていないものとし,未感染者数(感受性保持者 Susceptible $S(t)$)が全人口($N$ 定数)とほぼ等しいとする。なお,感染者(Infected $I(t)$)と未感染者の接触による1人1日当りの感染率 $\beta$は対策効果を含めて時間の関数$\beta(t)$とした。さらに,感染期間(日)を$\alpha$として,実効再生産数を$R_t=\alpha \beta(t)$で定義する。このとき,感染者数$I(t)$は次の微分方程式を満足し,$R_t$は$I(t)$とその時間微分から求まる。
\begin{equation}
\begin{aligned}
\dfrac{d I(t) }{dt} = \beta(t) S(t) I(t) / N - I(t) / \alpha \approx \dfrac{ R_t - 1}{ \alpha} I(t) \\
\therefore R_t = 1 + \alpha  \dfrac{d I(t) }{dt} / I(t)
\end{aligned}
\end{equation}
③計算方法:誤差はあるけれど時間の単位を1日とする差分式に直して,エクセルで計算する。もとの新規感染数データのままではゆらぎが大きいので,5日移動平均を求めて$I(t)$とする。これから中心差分($I(t+1)-I(t-1))/2$)で1日当りの新規感染数の変化分を求める。さらに,このゆらぎを緩和するためにこの5日移動平均をもとめて$d I(t)$とする。これから②の式を用いて$R_t$を求めた。

④結果:図のとおりである。
図1 全国の新規感染数の推移(2/22-5/1)

図2 全国の実効再生産数の推移(2/24-4/29)

図2には社会的な事象を書き加えているが,WHOへの報告公表時点とは時間的なずれ(1週間〜10日)があることに注意する。→(注)12日ぐらいか(P. S. 参照)

⑤ 結論:1ヶ月前に1.5〜2.0近くまであった$R_t$が現在0.5〜1.0の範囲にまで落ちてきたことがみてとれ,これは専門家会議の結果とおおよそ近いものである。しかし,細かく見ればそのピークの位置や高さは異なっている。とくに,2月末から3月中旬までの結果は待ったく違う。そもそも出発点となる新規感染数のデータもWHOに報告されたものは,1週間の大きな周期構造を持っており,牧野さんのいうように(ちょっと意味が違うかもしれないけれど),専門家会議が確定感染者数(Confirmed)からどのように処理して新規感染数の推定値を導いているのかがはっきりしないのでもやもやが残る。

P. S. 高橋健太郎さん(@kentarotakahash)によれば,「潜伏期間+発症〜報告までの日数の平均を12日と考えてみたら、かなり納得できました。15日目あたりから一度、下降してRe=1を切りますが、2/24+15-12ですので、2月27日の休校要請の効果に見えます。その下降のピークは3月4日頃。一週間で緩んで、再び上昇が始まった。3月10日頃にRe=2を越えるピーク。」だそうだ。またさらに,「その後、Re=1.5以上の状態が続きますが、三連休の人手の反省があり、3月25日の都知事緊急記者会見を経て、3月27日頃から下降に転じる。3月31日にはRe=1を切り、専門家会議の4月1日には1を下回ったという分析と合致します。」
そして,「その後一度、上昇して、1を越えますが、4月5日頃から本格的な下降が始まる。これは緊急事態宣言が出るというムードの先取り。が、4月14日あたりから再び上昇の兆しというところでしょうか。」なるほどなのだった。


[2]新型コロナウイルス感染症対策専門家会議の見解等その2(牧野淳一郎,2020.05.12)
[3]感染症数理モデル(北海道大学医学統計学教室のSqquential SEIRモデル)
[4]Rt-COVID-19 Japan (都道府県別新型コロナウイルスの実効再生産数)
[5]山中伸弥による新型コロナウイルス情報発信
[6]A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics(Cori et al.)
[7]新型コロナ対策専門家会議が判断の拠り所にしている『実効再生産数・倍加時間』の算出方法に関する考察(@makirin1230  2020.05.06)

2020年5月2日土曜日

WHOのSituation reports

WHOがCOVID-19の特設ページで毎日掲載しているSituation reportsの様式が,5月1日版から模様替えした。なんでもいいからCSVで出してほしい。日本の厚生労働省とかわらないのか。

これまでは,もとのpdfファイルから,pdftotext(コマンドラインツール)でテキストにしたものと, PDFelement6 Pro(無料版)でエクセル化したものとを組み合わせて,国・地域別データを整理した日次統計テキストファイルをつくっていた。

新しい様式ではpdftotextの出力がちょっとましな感じだったので,perlプログラミング1発+若干の手作業による修正で,上記の日次統計テキストファイルまでたどり着くことができそうだ。

いや,Johns Hopkins 大学のCSVデータを使えという話もあるかもしれないが,いちおうそこはほれ,WHOを支持しているので。

あいかわらず正規表現もまともに習得していないので泥臭いperlプログラムになった。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# /usr/local/bin/perl
# 05/02/2020 K. Koshigiri 
# 05/07/2020 K. Koshigiri -> revised version
# extract data from WHO covid-19 reports
# https://www.who.int/emergencies/diseases/
# novel-coronavirus-2019/situation-reports/
# usage:: ./who.pl < pdf-in.txt > out.txt

while($line = <STDIN>) {
  chomp($line);
  if($line =~ /([A-Z].*)/) {
    $a=$1;
    $a =~ s/\(.*//;
    $flg='a';
  } elsif($flg eq 'a' && $line =~ /([\d\h]+)/) {
    $b=$1;
    $b =~ s/\h//;
    $flg='b';
  } elsif($flg eq 'b' && $line =~ /([\d\h]+)/) {
    $c=$1;
    $c =~ s/\h//;
    $flg='c';
  } elsif($flg eq 'c' && $line =~ /([\d\h]+)/) {
    $d=$1;
    $d =~ s/\h//;
    $flg='d';
  } elsif($flg eq 'd' && $line =~ /([\d\h]+)/) {
    $e=$1;
    $e =~ s/\h//;
    $flg='';
    print("$a\n$b\n$c\n$d\n$e\n");
  }
}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
※WHOのデータ形式が変わったので,若干修正した(2020.5.7)。

2020年5月1日金曜日

実効再生産数

新型コロナウイルス感染症対策専門家会議が5月1日の発表で実効再生産数$R_t$の値を示していた。だいぶ前に東京で$R_t$=1.7という数字を出して以来,この値については沈黙していたので,あちこちから不満があがっていたためかもしれない。


図 全国の実効再生産数の値(朝日新聞から引用)

新規感染数のピークが600人を越えていないのは何故だろう。生データや簡単な移動平均では600人を越えると思う。また,推定感染者数となってため,減少期の振動構造も消えているのだろうか。

2020年4月30日木曜日

新規感染数の推移

5月6日が期限であった全国の緊急事態宣言が1ヶ月程度延長されそうであまり異論はないようにみえる。twitterで各国の新規感染数を比較しながらこの問題を検討している人がいた。自分でもやってみた。ただし時間軸は揃え,イタリア,英国,日本×5,スウェーデン×5を試しにやってみる。


 図 新規感染数の推移(3/12-4/29)(日本とスウェーデンは5倍した値)

日本のデータが信頼性に欠けているということはさんざん指摘されている。それでもなお日本は,英国の高止まりやスウェーデンの上昇傾向とは異なりイタリアのような下降線に近いようにみえてしまう。本当のところはどうなのだろうか。まだ予断を許さない。

2020年4月29日水曜日

9月入学

どうやら5月6日に緊急事態宣言を解除するのは難しいとわかってきて,目くらましと先延ばしと人気取りのために9月入学を声高に叫び始める維新や国民民主や首長たち。下手すると経産官邸族に唆されてアベノマスク氏も乗ってしまうのかもしれない。やめたほうがいいような気がするけど。やっぱり入学式には桜がないといけませんね。COVID-19の次の波がきたらまた半年づつずらすのかよ。東大が失敗した大学だけシフトはありうるとは思うけれど・・・。子どもたちの学習保障はそれはそれで別に考えるほうがよいと思う。このたいへんで不確定要因が多い時期に更なる混乱を招くだけだろう。むしろ,各大学が入試問題を従来のように作れるのか,大学院入試ができるのか,などが老婆心ながら気になるところ。

2020年4月28日火曜日

東京タワーとスカイツリー

テレビで(テレビの見過ぎ),東京タワーと東京スカイツリーが同じ高さにみえる場所を探すというのがあった。その場所を結ぶ軌跡は円になっていた。そうなのか。

原点に高さ$h_1$の塔を置き,$x=a\ (a>0)$の点に高さ$h_2\ (>h_1)$の塔を置く。$x$軸上には仰角が等しくなる点が2つあり,$x/h_1 = (a-x)/h_2$と$x/h_1 = (a+x)/h_2$を満たす点であり,$x=\frac{a}{1 \pm h_2/h_1}$ で与えられる。

次に点P $(x,y)$を考えて,この点からの仰角が等しくなるための条件を求めれば,
\begin{equation}
\dfrac{x^2+y^2}{h_1^2} = \dfrac{(a-x)^2+y^2}{h_2^2}
\end{equation}
である。整理すれば以下のように円の方程式が得られる。ここで,無次元の量 $c$を $c=(h_2/h_1)^2-1$と置いた。
\begin{equation}
\begin{aligned}
\bigl\{ ( h_2 / h_1 )^2 - 1 \bigr\} x^2 + 2 a x + \bigl\{ ( h_2 / h_1 )^2 - 1 \bigr\} y^2 = a^2 \\
(x + a/c)^2+y^2=a^2/c *\bigl( 1 + 1/c \bigr) = (a/c * h_2/h_1)^2
\end{aligned}
\end{equation}
中心の位置は先ほど$x$軸上に求めた2点の中点になっている。円の半径は$a/c * h_2/h_1$である。

2020年4月27日月曜日

有界な単調数列は収束する


大人の学び直し

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
○実数を項とする無限数列 $\{a_n\}$ を考える。すなわち,$n \in \mathbb{N}$,$a_n \in \mathbb{R}$ である。数列 $\{a_n\}$ の全ての項を要素とする集合を $A$ とする。すなわち,$A=\{a_1, a_2, a_3, \dots \}$ である。

○集合 $X$ が 上に(下に)有界 であるとは,$\forall x \in X \rightarrow x \le (\ge) M$ となる実数 $M$ が存在することである。この $M$ を $X$ の上界(下界) とよぶ。$X$ が上にも下にも有界であれば,$X$ は 有界 であるという。

○上界(下界)$M$ が $M\in X$ であるとき,これを $X$ の 最大値(最小値) という。

○上界(下界)の集合が空集合 $\emptyset$ でないとき,上界(下界)の最小値を $X$ の上限(下限) という。空集合ならば,上限(下限)を $\infty \ (-\infty)\ $ と表すことがある。

○なお,数列 $\{a_n\}$ については,その全ての項からなる集合 $A$ についての表現を流用して,数列に対して,有界,上界(下界),最大値(最小値),上限(下限)などの用語をあてはめることにする。

○数列 $\{a_n\}$ が有界ならば,$\forall n \in \mathbb{N} \rightarrow |a_n| \le M$ と表すことができる。

○数列 $\{a_n\}$ が 単調増加(減少) であるとは,すべての$n \in \mathbb{N}$に対して,$a_n \le a_{n+1}\ ( a_n \ge a_{n+1} )\ $ が成立することである。等号を含めない場合は, 狭義単調増加(減少) であるという。単調増加と単調減少の性質を持つ数列をまとめて 単調数列 という。

数列が収束する ことは次のように表現する。各項が実数である無限数列 $\{a_n\}$ がある。この数列が実数 $\alpha$ に収束するとは,つぎの関係が成り立つことをいう。『任意の $\varepsilon > 0$ に対して,ある自然数 $N(\varepsilon)$ が存在して,$n \ge N(\varepsilon)$ をみたす 任意の自然数 $n$ について $| a_n - \alpha | < \varepsilon $をみたす』

$\forall \varepsilon > 0,\ \exists N(\varepsilon) \in \mathbb {N} \ \mathrm{s.t.}\ \forall n \in \mathbb {N} \quad [\ n \ge N(\varepsilon) \Rightarrow | a_{n} - \alpha | < \varepsilon \ ]$

○「 有界な単調数列は収束する 」を証明するための前提としては,実数に関する次の公理が必要となる。すなわち,「上に(下に)有界な実数の部分集合には最小上界(最大下界)が存在する。

○証明は次のように進む。上に(下に)有界な数列 $\{a_n\}$ があるとすると,その最小上界(最大下界)を $\alpha$ とすると,すべての $n$ に対して,$a_n \le \alpha \ (a_n \ge \alpha)\ $ が成り立つ。

最小上界より小さな数(最大下界より大きな数) $\alpha \mp \varepsilon \ ( \varepsilon > 0 )\ $を考えると,この数と $\alpha$ との間には数列 $\{a_n\}$ の部分が存在する(存在しなければ, $\alpha$ が最小上界や最大下界ではないことになるから)。つまり,$\varepsilon$ を与えると定まる自然数 $N$ が存在し,それは,$a_N > \alpha -\varepsilon \ ( a_N < \alpha + \varepsilon )\ $を満足する。

○$\{a_n\}$ は単調増加(単調減少)数列なので,$n \ge N$ となる $n$ に対して,$a_n \ge a_N > \alpha -\varepsilon \ (a_n \le a_N < \alpha + \varepsilon)\ $である。一方,$a_n \le \alpha \ ( a_n \ge \alpha )\ $ より,$a_n < \alpha + \varepsilon \ (a_n > \alpha - \varepsilon )\ $ である。

○これらより,$n \ge N$ となるすべての $n$ に対して,$ |a_n - \alpha | < \varepsilon $ が成り立つ。したがって,数列 $\{a_n\}$ は $\alpha$ に収束する。これを次式のように表して,$\alpha$ を収束する数列の 極限値 という。
$\lim_{n \to \infty} a_n = \alpha$


2020年4月26日日曜日

COVID-19雑感(2)

昨日のものを再編してみた。

○ニューヨーク州の抗体検査による既感染累計が人口の14%というのはほんとうだろうか。
 (もしそうならモデルパラメタの前提がそもそも間違っている)

○スウェーデンの試み(ロックダウンしない)は成功するのだろうか。死亡数累計が人口の0.02%を越えて増加中である。スペインの0.04%よりは小さいが,増加率が・・・

○ブラジル,ロシアなどもじわじわと増えている。


図 欧州・米州の新規感染数累計の推移(人口の10ppm時点を原点)

2020年4月25日土曜日

COVID-19雑感(1)

徒然なるままに・・・

○日本は相変わらず情緒的な対処法で乗り切ろうとしている。正確なデータがないままに。

○シンガポールの新規感染数累計は,人口比で0.2%となり湖北省の0.1%を越えた。まだ収まる様子がみえないのだけれど大丈夫かしら(それにしては死亡数累計が少ない)。

○東京は,韓国・オーストラリアを越えてまだ収束先がみえない。日本全体も上昇中。
 (残念なことに,石川県と福井県が人口比で東京についで2位と3位なのだ)

○台湾,中国,韓国,香港は,第1段階が終息している。


○通常のインフルエンザと比較して問題なしとする正論?は正しいのだろうか。

図 アジア・太平洋の新規感染数累計の推移(人口の10ppm時点を原点)

2020年4月24日金曜日

原子核の周期表

京大の萩野浩一さんと前野悦輝さんが,原子核の周期表を考案し,三次元化したモデルを「ニュークリタッチ」(元素の周期表の三次元モデル「エレメンタッチ」の仲間)と命名したとの発表が京都大学からあった。

論文のほうは,A Nuclear Periodic Table で,Foundations of Chemistry に発表される。

いやー,かつてのシェルモデルユーザとしては盲点でしたね。なかなかおもしろく,教育的な価値もあると思う。

2020年4月23日木曜日

遠隔授業のばたばた(6)

遠隔授業のばたばた(5)からの続き

今日は1回生の「科学のための数学」の初回である。昨日は主に2回生でmoodleにも慣れている集団だったが,今日はどうだろうか。

受講登録者52名の内,45名が出席チェックを通過,46名がアンケートをクリアした。
自宅が44名,寮・下宿が1名,その他(どこやねん)が1名。デスクトップPCが1名,スマホが4名,41名がノートPCである。50GB程度は速度制限なしに利用できるが2名,上記より小さいかわからないが3名,41名が自宅のネットワークなどで無制限に利用できる。まあだいたい昨日と同じ傾向だった。

なお,高等学校で数Ⅲを履修していないものが,11名/46名と1/4あるので毎年のように授業の進め方が難しい。全員化学を選択しているが,物理は35名,生物は13名といったところ。

練習課題の提出でひとり手間取った。手順は次の通りである。

① スマホなどで課題を撮影した写真を PC に取り込む。
② PowerPoint に上記写真ファイルを貼る。
③ 写真を選択した状態で,書式→図の圧縮 または 図の書式設定→圧縮 を実行する。
 (最小のメールサイズにして下さい)
④この PowerPoint ファイルを koshigiri-k-0420.pptx のように名前を付けて保存。
⑤ koshigiri-k-0420.pptx を pdf ファイルとして出力し moodle の課題提出箱に提出する。

これをチャットで手取り足取り教えることになった。なかなかハードルの高い道のりである。

2020年4月22日水曜日

遠隔授業のばたばた(5)

遠隔授業のばたばた(4)からの続き

いよいよから今日から自分の最初の授業「古典力学(前期水曜2限)」が始まった。とりあえず用意したものは,moodleのページとOneDriveに置いた音声付きノート3ページ(各10分≒10MB)である。

moodleのページの段取りは以下の通りである(学生は自己登録でゲストアカウントも可にしている)。学年暦の都合で次回は今週の土曜日にやってくる。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
第1回  オリエンテーション(4/22水)

学生からの質問箱
 質問や意見はこちらにどうぞ。

第1回出席チェック
 出席チェックが終わったら受講生アンケートに進んで下さい。

受講生アンケート
 受講生アンケートが終わったらチャットルームを試して下さい。

第1回チャットルーム
 授業時間中はここでも質疑応答を受けます。

第1回の講義内容
 この中のファイルを視聴して下さい。

練習課題の提出ボックス
 練習課題を本日中に提出して下さい。
 練習課題「ノートに自分の学籍番号と名前,今日の感想(数行)を書いたものを撮影し,pdfファイルにして提出する」

第1回の課題を提出
 第1回課題は次回(4/25土)までに提出してください。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10時半をすぎると出席チェックが増え出した。結局36名の受講者全員が出席チェックしている。チャットルームはほとんどみんな通りすぎていく。質問が2,3件あった。
アンケートは匿名であったがほぼ解答している。通信環境不明が2名,5G以下が3名,50G以下が1名,他は無制限だ。受講場所は,寮・下宿が3名で,他は自宅だ。端末はスマホが8名,タブレットが1名,デスクトップPCが1名,他はノートPCだ。高校で数Ⅲを履修していないものが6名いた。

練習課題がなかなか集まらない。授業終了の12時ごろで1/3,13時をまわったところでようやく半数だったので,moodleのアナウンスメントを使って全員にメールによるお知らせをして,困った場合は申し出るようにする。

まあ,第1回なので評判はそこそこであった。しかし準備にかなりの時間がとられてしまうのが難点である。このままいつまで続けられることだろうか。でも,授業としてはこの形態のほうが望ましいとも思えた。反転授業に大きくかじ取りすべきかもしれない。

P. S. 夕方,zoomによる全学説明会があった。オンライン授業は5月末まで延長というか,実技・実験・実習科目以外は基本オンライン授業でということだ。問題は,中国留学生,期末試験,実習などだろうか。いまのところmoodleの負荷問題は深刻化していない。

2020年4月21日火曜日

ウルフラムの物理

Stephan Wolfram の "A Class of Models with the Potential to Represent Fundamental Physics" がarxiv.orgに投稿されていた。440ページもあるぞ。
A class of models intended to be as minimal and structureless as possible is introduced. Even in cases with simple rules, rich and complex behavior is found to emerge, and striking correspondences to some important core known features of fundamental physics are seen, suggesting the possibility that the models may provide a new approach to finding a fundamental theory of physics.
可能な限り最小で構造のないモデルのクラスが紹介されている。単純なルールの場合でも,豊かで複雑な振る舞いが現れることがわかり、基礎物理学の重要な核となる既知の特徴との顕著な対応が見られ、このモデルが物理学の基礎理論を見つけるための新しいアプローチを提供する可能性を示唆している。
目次は次のとおりである。
 1. Introduction
 2. Basic Form of Models
 3. Typical Behaviors
 4. Limiting Behavior and Emergent Geometry
 5. The Updating Process for String Substitution Systems
 6. The Updating Process in Our Models
 7. Equivalence and Computation in Our Models
 8. Potential Relation to Physics
    Additional Material
    References

発売予定のハードカバー,A Project to Find the Fundamental Theory of Physics(816ページ)のドラフトかと思ったけれど,そうではなかった。WolframのA New Kind of Science から続いている思想の延長線上にある。たぶん,大学に入る前に新聞でカタストロフィーの理論をみて,わーこれはすごい!と思ったが,実際のところはそうでもなくてちょっと残念だったのに近いのではないかと予想しているのだけれど。それでもちょっとワクワクする。

[1]A Class of Models with the Potential to Represent Fundamental Physics(上記のオンラインバージョン)

2020年4月20日月曜日

遠隔授業のばたばた(4)

遠隔授業のばたばた(3)からの続き

4月20日,いよいよ今日からはじまった。ただ,こちらから観測されている範囲では大きなトラブルはない。教務システムUNIPAも学習管理システムmoodleも無事に動いているようだ。もっとも,現場は学生からの質問で大わらわ状態のようだが。

現時点でmoodleに登録されている授業で検索にかかった主なものは下記のとおり。
   1限  2限  3限  4限 5限 6限 7限  合計
月曜 14  18  23  16  5  8  4  88
火曜 13  23  18  18  3  5  6  86
水曜 10  17   0   1  0  5  4  37
木曜 10  28  26  16  4  1  4  89
金曜 13  21  19  17  6  2  3  81
合計 60 107  86  68 18 21 21 381

うーん,大丈夫なのだろうか。

2020年4月19日日曜日

遠隔授業のばたばた(3)

遠隔授業のばたばた(2)からの続き

大阪府立大学の講義動画作成法のYouTubeがなかなか参考になった。田崎晴明さん方式 にしようかどうしようか。そこで,各種方法をまとめてみると次のようになる。
  1. 講師動画&板書動画(1ファイル)(300MB/45分)
  2. 講師音声&板書動画(1ファイル)(200MB/45分)
  3. 講師音声&ノート画像(1ファイル)(100MB/45分)
  4. 講師音声,ノート画像(2ファイル)(10MB/45分)
それらの作成方法は以下のようになる。
  1. zoomの講義録画   → a
  2. zoomの画面共有録画 → b
  3. QuickTimeの録画機能 → c
  4. PowerPoint/Keynoteの録画機能 → c
  5. iOSの録音機能+手書きアプリ → d (→ c FFmpegで編集:50MB/45分)
データ容量としては d. が有利であるが2ファイルを扱う手間がやや心配。

むしろ問題は学生からの課題回収のほうである。大学からはmoodleサーバ保護の観点から,テキストなどなるべく軽いデータで課題を出させよとのお達しがきた。A4プリント1枚の解答をスマホの写真で撮れば2MB程度になるので,50人のクラスでは100MB/授業1回となる。2000クラスで15回の授業を行えば3TBとなる。うーん,なかなか微妙なラインではある。写真をpdf化することに負担もあってどうしたものか思案のしどころ。
(こんなことばかりしていて肝腎の授業ノートが1ミリも進んでいない・・・orz)

P. S. 課題の画像ファイル(2MB)は,PowerPointに貼り付けて画像圧縮(メールサイズ)にしてpdf出力すれば,100KBのオーダーに抑えることができた。

2020年4月18日土曜日

遠隔授業のばたばた(2)

遠隔授業のばたばた(1)からの続き

今日も朝からmoodle支援を2件すませた。昼からは国立情報学研究所(NII)【第4回】4月からの大学等遠隔授業に関する取組状況共有サイバーシンポジウム(4/17オンライン開催)に大阪教育大学の尾崎君が登場するようなので,さっそくアクセスすべくCiscoのWebexやブラウザエクステンションをインストールするなどの準備を行う。

画質と音質はだいぶ落としていたけれど,内容はかなりおもしろかった。とくに尾崎君の「オンライン授業実施に向けた個別サポートデスクの実施体制の構築とその運用」は,実用的でシンプルで汎用性も高いので,喜連川先生もほめていた。

そんなわけで,昨日に続いて試行錯誤が続いている。神戸高校の杉木勝彦先生(大阪教育大学理科教育専攻物理の稲垣研出身)が,遠隔授業用の教材作成に取り組んでいる。iPadのGoodnotesで作成した静止画に,コントロールセンターで有効にした画面収録機能を使って,音声を重ねるというものである。まず,ターゲットとなるノートを開いた状態でコントロールセンターを呼び出して画面収録をオンにする。説明のお話が終わったところで録画中ボタンをタッチして終了する。これにより写真のところに収録された動画がmp4形式で保存された(毎分7.5MB程度か)。

もう少し軽くならないかと検索しまくったところ,FFmegを使って,静止画と音声ファイルから動画を作るというのがあった。四苦八苦してあれこれ試したところ次のようにするとうまくいくことがわかった。結城浩さんのおかげである。

静止画(img.jpg)と音声ファイル(snd.m4a,iPhoneのボイスメモで収録)を使って,mp4ファイルを作るには次のようにする(-pix_fmt yuv420pがミソだった)。
  ffmpeg -loop 1 -i img.jpg -i snd.m4a -ab 24k -vb 72k -c:v libx264 -pix_fmt yuv420p -shortest out.mp4
また,2つのmp4ファイルを結合するには次のようにする。
 ffmpeg -safe 0 -f concat -i mylist.txt -c copy out3.mp4
ただし,mylist.txtには結合前のファイルを並べておけば良い。
 cat mylist.txt (out?.mp4は同じコーデックで作ったファイルであること)
 file ./out1.mp4
 file ./out2.mp4

あとはコンテンツだ。熊本大学の鈴木克明さん(昔,日本文教出版の高等学校の情報の洋教科書でいろいろお世話になった。今,日本教育工学会の会長になっておられた)が上のシンポジウムで指摘していたように,無理せずにゆるゆると真の目的を見据えながらやるのがよろしいようだ。

遠隔授業のばたばた(3)に続く








2020年4月17日金曜日

米国の集団免疫率(2)

米国の集団免疫率(1)からの続き

トランプは4/17の会見で米国におけるCOVID-19の死亡数は6〜6.6万人にとどまるとした。これは勝手な想像ではなく,IHMEの最新の予測である。前回の10〜25万人から減少させたことを自分の政策の成果であるかのようにアピールしつつ,ロックダウンを解消して経済回復を誘導しようという意図に基づくものだろう。

前回のSIIDR2モデルの適用はちょうど2週間前だったので,あらためてこのモデルと上記の主張を組み合わることで米国の集団免疫率を推定してみる。前回のように1ppm到達の基準日3/10から4/17までの39日分の新規感染数累計と死亡数累計の人口比データを示す。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
xa=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38]
ya=[0.014,0.021,0.030,0.038,0.051,0.051,0.051,
0.106,0.107,0.215,0.317,0.462,0.462,0.958,
1.280,1.576,1.929,2.074,2.587,3.136,3.722,
4.268,4.953,5.684,6.483,7.335,8.310,9.327,
10.13,11.03,11.99,12.93,14.00,14.96,15.92,
16.81,17.55,18.33,19.20]
za=[0.06,0.08,0.09,0.11,0.12,0.12,0.12,
0.18,0.18,0.30,0.46,0.61,0.61,1.22,
1.43,2.04,2.68,3.01,3.77,5.06,6.41,
7.28,8.65,11.7,14.6,17.8,21.3,25.4,
29.0,32.9,38.7,44.5,50.4,56.2,62.0,
66.7,71.2,78.5,85.6]/100
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

SIIDR2の計算において次のパラメタを用いると上記の米国のデータが再現できる。
$\beta = 0.60, \nu =0.12, \lambda=28, \tau=16$, $\alpha_1=5/0.80, \alpha_2 = 5/0.20$, $\gamma_1 = 15/0.95, \gamma_2 = 15/0.06$。前回と異なり,$\gamma_2$の値は,中国や韓国などを説明した値の方にややに戻している。

 図1 米国の感染カーブ(u3=重症感染数,u4=死亡数,u6=新規感染数累計)


図2 米国の感染カーブ(同上,u5=回復(免疫獲得)数)

① 米国では重症感染数のピークを迎えている。
② 最終的な死亡数は6〜7万人程度になる。
③ 第1回目の終息が想定される2ヶ月後の集団免疫率は1〜2%のオーダーである。






2020年4月16日木曜日

遠隔授業のばたばた(1)

今,日本中の大学教員が試行錯誤の真っただ中にいるはずだ。Facebookの「新型コロナ休講で,大学教員は何をすべきかについて知恵と情報を共有するグループ」には今日現在で15,000人以上が登録している。令和元年度の学校基本調査では,大学教員の数は19万人弱なので,その8%程度に相当する。なかなか壮観だ。

私も,大阪教育大学で使われてきたmoodleの利用支援の猫の手として活動をすることになった。4月20日からインターネットを活用した授業がはじまるので待ったなしだ。通常の対面授業は5月11日(月)から再開する予定だが,今後の感染拡大の状況によっては,感染拡大防止期間を延長し,引き続きインターネットを活用した授業等を行うということなのでますます大変である。通年で3800科目あるうち前期が半分だとして1900科目,そのうち1100科目のコースがmoodle上に観測された。約6割に相当する。実験・実習・演習科目などもたくさんあるので,これらがどうなるのかは心配だ。

さて,自分が前期に担当する演習・実験以外の授業は3科目(古典力学・科学のための数学・電磁気学)だ。moodleのコースの枠組みは3回分作成したが,問題はコンテンツである。とりあえず,ギガに優しい田崎晴明さん方式でやることを想定している。写真にとって pdf化したノートと,iPhoneもしくはiPadで録音した音声データは,MicrosoftのOneDriveに置くことにする。なお,m4a音声データは,次のようにmp3に変換する予定である。

  m4aからmp3への変換
   ・Apple Music App を開く
   ・メニューバーで「ミュージック」>「環境設定」の順に選択
   ・「ファイル」タブをクリックし、「読み込み設定」をクリック
   ・「読み込み方法」の横のメニューをクリックし、曲の変換先の
    エンコード形式を選択,「OK」をクリック
   ・キーボードの「option」キーを押しながら「ファイル」>「変換」>
    「[環境設定で指定した読み込み方法]に変換」の順に選択
   ・読み込んで変換したい曲が入っているフォルダまたはディスクを選択
    変換前の形式の曲と、変換後の曲がライブラリに表示

それでもなお,板書形式が可能かどうかを模索している。
① Notabilityがよいということだったが,OneDriveに置こうとして撥ねられた。
② Goodnote5と画面記録がよいということで,画面記録アプリをさがしたところ,
 DU-Recorder(App内課金が高額),ApowerREC(機能しませんでした)があった。
③ iPadとMacを有線で結んで,Mac側のQuickTimeで録画先をiPadに指定して録画する
 方法があった。これはうまくいった。ただ,45分で200MBを越えるのでどうするか。
④ この場合でも,NotabilityよりはGoodnote5のほうがなんとなく使いやすそうである。
⑤ PC側のzoomの録画の方が便利ではないか,ということで,上記の設定をzoom側で
 保存してみたところ,終了時に録画ファイルをm4aに変換してくれた。まあまあ。
試行錯誤は続く・・・というかもうあまり時間が残されていない。

遠隔授業のばたばた(2)に続く


2020年4月15日水曜日

モビリティデータ

Appleが,新型コロナウイルス感染症(COVID-19)拡大防止に向けた世界各地での活動を支援するため,Appleマップによるモビリティデータの傾向を示すデータ(Apple Maps Mobility Trends Reports)を提供した。

しばらく前にはgoogleも同様のデータ(COVID-19 Community Mobility Reports)を公開していた。例えば日本の時系列はpdfファイルとして提供されている。このデータを再構成して,4月5日の時点でのいくつかの国の特徴を比較したものが次の図である。
図1 グーグルモビリティトレンドからの4/5の傾向(平常時との比率)

アップルの方は,上方の種類は限定されているが,時系列のCSVデータも提供されていてありがたい。ここではその結果だけを例示してみよう。

図2 日本のモビリティトレンド(1/13-4/15)

図3 韓国のモビリティトレンド(1/13-4/15)

日本の3月下旬の緩みがはっきりと現れている。まだまだ活動制限のレベルは不十分であり,西浦博さんがあせって,重篤者85万人,死者40万人という発表を(遅すぎると思うが)したのもわからなくはない。しかし前提条件がよく理解できないのだ。例えばNHKのニュースでは,以下のような説明があったが・・・
外出自粛などの感染防止対策を何も行わなかった場合、感染が広がり始めてからおよそ60日でピークを迎えると推計しています。
その場合の重篤な患者は合計で▽15歳から64歳まででおよそ20万人、▽65歳以上で65万人の合わせておよそ85万人に上るとしています。
その場合、人工呼吸器が足りず、必要な治療が受けられなくなり、中国でも重篤患者の半数が死亡しているという研究があるということで、日本国内でも半数にあたるおよそ40万人以上が死亡すると推計しています。
いずれにせよ,相変わらず安倍政権支持率は40%の水準を維持しており,日本の政治はびくともしていない。


2020年4月14日火曜日

基準の変更と比較

アジアの状況欧州の状況,からの続き

アジア太平洋と欧州・北米の新規感染者数累計を人口で規格化したグラフを考えてきた。これを並べて比較してみる。これまでは基準を人口の1ppmを越えた時点としてこれを各国の共通の原点とした対数グラフを考えた。その基準点を人口の10ppmになった時点に変更して比べてみる。累計数がかなり増加してきたため,最近の特徴をよく観察したいと思ったので。

図1 アジア・太平洋地域の新規感染数累計対人口比の推移(100ppm)

図2 欧州・北米地域の新規感染数累計対人口比の推移(100ppm)

イランは比較のために両方のグラフに含めている。欧米はすべてイランを上回っている。グラフで示した欧米主要国の新規感染数累計は人口比ではすでに湖北省を越えているわけだ。しかし,アジアでは震源地の中国湖北省以外はすべてイランの水準を下回っている。

①欧米は同じ傾向で推移している。指数関数的増加の時定数がしだいに減りつつある
②アジアは,中国が既に収束し,韓国がこれに続いている。
③オーストラリア,香港,マレーシアも減速の兆が見える。
④台湾は一貫して低水準に押さえ込んでいる。
⑤シンガポールは当初,台湾や香港と並んだ優等生だったが,その後抑え切れていない。
⑥日本(東京)は,ほぼ一定の時定数での指数関数的な増加を続けている(新規感染数累計は1.107倍/日,死亡数累計は1.046/日の割合で増えている)。

もし,この定数が変化しなければ,緊急事態宣言の期限である5月6日には日本の新規感染数累計は6万人に達する。これは人口比で500ppmであり,韓国の200ppmや湖北省(武漢以外)の370ppmを超える水準に相当する。また,このときの死亡数は260人程度にとどまり,そのまま推移すれば,死亡数(5/6の21日後)/新規感染数累計(5/6) = 1%というリーズナブルな値が得られる(感染数と死亡数の間に21日程度の遅れがあると仮定している)。

2020年4月13日月曜日

欧米の状況



欧米の状況を見ると新規感染数累計は人口比で10ppmを越えているところがある。スペインの30ppmは湖北省(武漢以外)の10倍近い水準であり,下記の国々の新規感染数累計をはすべて湖北省(武漢以外)以上の値となっている。ただし,対数グラフ上は上に凸となっていて増加率は減少に向いつつある。


図1 人口当りの新規感染数累計(単位100ppm,基準日は1ppm達成時)


図2 人口当りの新規感染数累計の対数(単位100ppm,基準日は1ppm達成時) 

2020年4月12日日曜日

アジアの状況

新型コロナウイルス感染症の感染者数の増加が5/6には収まるように考えている人が多いのかもしれない。うまくいけば7月には一端終息に向ったようにみえる可能性もある。しかし,集団免疫が獲得できずワクチンもない現状では,緊急事態宣言レベルの制限を継続するか,断続的に緩めたり強めたりすることの繰り替えしかの二択ではないだろうか。中国以外で終息に近い状態を実現しているのは台湾だけだ。それに近いのは韓国。香港もシンガポールも完全にはおさまっていない。どこまで耐えられることか。

図1 人口当りの新規感染数累計(単位100ppm,基準日は1ppm達成時)

図2 人口当りの新規感染数累計の対数(100 ppm,基準日は1ppm達成時)

注:上記は武漢を除いた湖北省の値であり,370ppmに収束している。武漢を含めた湖北省の収束値は1150ppmであり,上記の3.1倍に相当する。湖北省の全体イメージは湖北省(武漢以外)を全体に3倍程度スケールしたものと考えられることに注意する。

2020年4月11日土曜日

zoom

よくわからないまま,zoom を使った moodle による遠隔教育の設定支援要員に駆出されることになってしまった。手元のMacbookは古いので(2.5GHz Dual Core Intel Core 5i )背景が設定できなくて悲しい。自分のコースさえまともに完成していないのに大丈夫なのかな。猫の手も借りたい逼迫した状態にあることは間違いない。


2020年4月10日金曜日

BCG

Wikipediaによれば,BCG  とは次のようなものだった。
BCGは,実験室で長期間培養を繰り返すうちにヒトに対する毒性が失われて抗原性だけが残った結核菌であり,BCGワクチンはBCGを人為的にヒトに接種して感染させることで,結核に罹患することなく結核菌に対する免疫を獲得させることを目的としたものである。
小学生の時には,毎年ツベルクリン反応を調べる注射が恒例行事だった。ツベルクリン(独: Tuberkulin)とは,結核菌感染の診断に用いられる抗源である。前腕の内側に注射して数日後にこれが赤く腫れている(陽性)か変化なし(陰性)かを透明の物差しで測って確認する。たぶん1cm以上のサイズなら陽性なのでこれでOKだ。それ未満なら陰性や疑陽性,すなわち結核菌に対する抗体がないので,BCGを注射しなければならない。したがって小学生にとってはこれはなかなかドキドキする検査なのである。

自分が小学生低学年の間は陰性が続いていて,ほぼ毎年のようにBCGを注射していたような気がする。1回くらいのBCGでは抗体ができなかったということか。で,BCGも初めのうちは今のようなスタンプ型ではなかった。それがいつの間にか(日本では1974年から)定期化され全員接種に切り替わっていた。

そのBCGが新型コロナウイルス感染症に効果があるかどうかということで議論になっている。乳児向けのBCGが不足することがないように祈るだけである。

2020年4月9日木曜日

緊急事態宣言と接触制限モデル(3)

緊急事態宣言と接触制限モデル(2)からの続き

4月7日のtwitterで牧野淳一郎さんがいうには
一応どれも現実をモデルしているはずのところで、そこまで行動抑制しないといけない割合が、西浦氏:0.2、大橋氏「0.45](R_0>1でいくとして)、佐藤氏 0.02 で3人で20倍違う時点で少なくとも2人は間違っているのは明らかであろう。
西浦氏は,緊急事態宣言と接触制限モデル(1)で取り上げた西浦博さん(北海道大学),大橋氏は,新型コロナウイルス感染症の 流行予測の大橋順さん(東京大学),佐藤氏は,COVID-19情報共有の佐藤彰洋さん(横浜国立大学)である。

上に示されている数字は行動抑制の因子であり,モデルの感染率にかける係数だと思われる。ここでは,どれが正しいかについては考察せずに,ドイツなど欧州の基本再生産数$R_0=2.5$(7日増倍率が7倍)に基づいた西浦さんの計算(我々の評価では$R_0=2.3$だったが)を,東京の現状に合わせて再計算した結果を報告する。

前回述べたように,現在の東京では,7日増倍率が2.5倍($R_0=1.65$)程度なので,西浦さんが用いている値よりかなり小さいのだ。単純なSIRモデルを用いてこれを再現するパラメタセットを探し,その場合に接触制限の効果がどうなるかを調べよう。

やり方は前回と同じなので,パラメタを示す。β=0.28,初期値はν=0.005とすれば上記の増倍率が再現できた。つまり,さきのMathematicaコードにおいて,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
f[n_, β_, α_, ν_, p_]:= 
NDSolve[{S'[t]==-(p+(10-p)*Tanh[2*(20-t)])/10*β/n*J[t]*S[t], 
J'[t]==(p+(10-p)*Tanh[2*(20-t)])/10*β/n*J[t]*S[t]-J[t]/α, 
R'[t]==J[t]/α, S[0]==n, J[0]==ν, R[0]==0}, {S,J,R}, {t,0,100}];
n=1400; β=0.28; ν=0.005; p=10;
sol = f[1400, β, 7, 0.005, p];
s[t_] := S[t] /. sol[[1, 1]];
i[t_] := J[t] /. sol[[1, 2]];
cft1[t_]:= (p+(10-p)*Tanh[2*(20-t)])/10*β/n*i[t]*s[t];
・・・
Plot[{cf1[t], cf2[t], cf3[t], cf4[t], cf5[t], cf6[t]},
{t, 10, 30}, PlotRange -> {0, 0.1},
GridLines -> {{19, 20, 21}, {0.005, 0.01, 0.015, 0.02, 0.025}}]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
などとすると計算結果は次のようになった。

図 SIRモデル+シグモイド関数制限措置による新規感染者数の変化(東京のデータ)
 (上から順に,青:制限なし,80%,60%,50%,40%,20%に制限)

増加と減少の臨界点は50%あたりにある。すなわち,数字だけでいえば大橋氏の値と近い結果が得られたのかな。大橋氏の資料に対する牧野さんのもろもろの批判にはうなずけるものもあるけれど。そう,このブログも拡散してはいけない情報の仲間である。

まとめ
新型コロナウイルス感染症専門家会議(というか西浦博さん)から出てきた接触8割削減の前提条件は,欧州並の$R_0=2.5$に対応する場合ということだった。それを現在の東京の$R_0=1.65$に対応させると,上記のように接触6割削減で新規感染数は減少させることができる。いずれにせよモデル計算の結果なので,他地域の今後の動向や安全率も勘案して,目標値として接触8割削減を掲げることは意味があるだろう。

P. S. 佐藤彰洋さんのシミュレーションに対する疑義がでてきた。ちょっと安心した。Delay Differential Equationによるモデリングは,それでもまだ自分には理解できていない。

P. P. S. 4/10に牧野淳一郎さんの解説が出てきたので問題点がよく理解できるようになった。ただ,6割削減でも新規感染数が減少に転ずるという牧野さんの解説は,7割削減が必要であるというこちらの結果とは食い違っていた。

[1]人との接触7~8割減、効果は 専門家「感染抑制できる」、全員やれば6割減でも 新型コロナ(朝日新聞)→タイトルと本文があまり整合していない記事
[3]いろいろなモデル計算(牧野淳一郎,2020.4.10)
[4]交通整理(牧野淳一郎,2020.4.12)
[5]公開質問状に対するコメント(佐藤彰洋,2020.4.13)
[6]交通整理の続き(牧野淳一郎,2020.4.12)
[7]交通整理の続きその2(牧野淳一郎,2020.4.16)



2020年4月8日水曜日

緊急事態宣言と接触制限モデル(2)

緊急事態宣言と接触制限モデル(1)からの続き

緊急事態宣言がでた翌朝(4/8)の日本経済新聞にも再び西浦さんの図が「感染拡大阻止 接触8割減が必要」という記事とともに掲載されていた。安倍晋三も同内容を専門家の見解として強調していた。

図 日本経済新聞(2020.4.8 朝刊3面)から引用

日経の記事を批判的に読み解いてみる。

①「接触8割減」は政府の専門家会議メンバーで,感染者数の予測を数理モデルで解析している北海道大学の西浦博教授がはじいた数字だ 。
→ 西村さんは新型コロナウイルス感染症対策専門家会議の当初の構成員ではなかった。クラスター対策班のメンバーか。

②1人の感染者が平均で何人に感染させたかを示す「実効再生産数」は3月21〜30日の改定データで推定1.7。
→新規感染者数累計の1週間の増倍率を$k$とすると,実効再生産数$R_0$との間に,$R_0=1+5/7*\log k $の関係がある(倍加時間と基本再生産数)。東京(3/20-3/31)のデータは,平均で$k=2.3$であることから,$R_0=1.6$となった(注:$R_0=1.7$に対応するのは$k=2.7$)。

③その時点では数万人の感染者が出ていたドイツ(2.5)を下回っていたが,
→ドイツ(3/20-3/31)のデータは,平均で$k=3.9$であることから,$R_0=2.0$となった(注:$R_0=2.5$に対応するのは$k=8$,3/10以前には$k=8$を超えていたが・・・)。

④4月に入っても感染増が続き,実効再生産数は3を超えてドイツを上回った可能性があるという。
→実効再生産数がを3を超えるとは。$R_0=3$に対応するのは$k=16$である。日本でそのようなタイミングがあったのだろうか。福岡で9倍,福井で20倍くらいのタイミングは一時的に見られるが,これらはいずれも感染数が少なくて揺らぎが効いてしまう段階の話である。

⑤このままだと1日あたりの新規感染が米ニューヨークのように数千人に達する。
→仮定が④であれば正しいし,指数関数的な増大であれば常に正しい言明ではあるが,事態を強調するためにやや話を盛っている印象を受けた。

ただし,新規感染数累計について単純な指数関数型増加傾向が続くと仮定すると(接触制限の効果がない場合),直近の増倍率は東京で1.15/日,大阪で1.10/日となっているので,
 東京:4/14:3千人,4/21:8千人,4/28:2万人,5/5:5万人
 大阪:4/14:1千人,4/21:2千人,4/28:4千人,5/5:8千人
である。1日あたりの数ではなく累計であることに注意。


図 新規感染数の1週間増倍率$k$と実効再生産数$R_0$

2020年4月7日火曜日

緊急事態宣言と接触制限モデル(1)

北海道大学の西浦博さんが4月3日にマスコミで示していた図がある。対策がない状態の新規感染者数が指数関数的な増大をしているときに,人の接触を20%減らした場合と80%減らした場合の新規感染者数の変化を示した図だ。これにより彼は欧米に近い外出制限の必要性を訴えていた。残念ながら,これは専門家会議や政府の共通のコンセンサスとはならず,やがて4月7日の7都府県に対する5月6日までの緊急事態宣言につながっていく。

ここではその図がどのようにして得られたものかを,素人が持っている簡単な道具と知識で理解することを目指す。報道されたニュースや伝わってくる情報は鵜呑みにはせず,自分で考えることが必要だから。集団としては人口1400万人の東京都を想定する。日本経済新聞におけるこの内容に関する報道の文脈でも東京を対象としていることがうかがえる。東京の4月3日における新規感染者数は14人(新規感染数累計は753人)であり,人口の1ppm条件がちょうど達成された頃なので,これ以降をSIRモデルなどの単純な微分方程式系で扱うことは可能だろう。

今,探してもみあたらないのだが,西浦さんはこの報道の後に解説のための動画を公開していた。それによればしばらく前のドイツなみの再生産数を仮定し,現時点から15日目以降に制限措置を行った場合をシミュレートしているとした。なお,彼のモデルでは,計算開始から15日目が現在であり,30日目が制限措置の開始時点となる。

今から3週間前のドイツでは新規感染数累計の7日増倍率が7倍になっていた。仮に6.3倍(1日に1.3倍)を仮定すると,基本再生産数は$R_0 = 1 + 5/7 * \log 6.3 \approx 2.3$となる*。一方現在の東京では新規感染数累計の7日増倍率が2.5倍(1日に1.14倍)程度なので,基本再生産数は$R_0 = 1 + 5/7 * \log 2.5 \approx 1.65$(倍加時間と基本再生産率を参照)である。だからこのドイツ並の仮定はちょっとどうかと思うが,いちおうこれを採用する。
(*西浦さんはドイツなどの欧州の平均基本再生産数が$R_0=2.5$であると話していた)

つまり,現在100人の新規感染者数はこのまま放置すると15日後のt=30(1.3^15≒50)に5000人以上に達するという状況を西浦さんは想定していると思われる。今の東京の水準をそのままあてはめた場合は,15日後のt=30(1.14^15≒7)に東京の新規感染者数は700人程度であることに注意しよう。

SIRモデルに接触制限措置の効果を含めた微分方程式系をMathematicaで書くと次のようになる。nは集団人口(1400,以下人数の単位は1万人当りとなる),βは感染率(0.44),αは感染期間(5),νは感染数の初期値(0.0002),pは制限措置の程度(p=10→制限なし,p=9→80%に制限,p=6→20%に制限)である。なお,接触制限措置は,βにかけるシグモイド関数(幅が1日のオーダー)によってモデル化して階段関数は用いない。t=15が4月3日現在(新規感染者数=100)に対応する。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
f[n_,β_,α_,ν_,p_]:=
NDSolve[{S'[t]==-(p+(10-p)*Tanh[2*(30-t)])/10*β/n*J[t]*S[t], 
J'[t]==(p+(10-p)*Tanh[2*(30-t)])/10*β/n*J[t]*S[t]-J[t]/α, R'[t]==J[t]/α, S[0]==n,J[0]==ν,R[0]==0}, {S,J,R}, {t,0,100}]

β=0.44 sol = f[1400, β, 7, 0.0002, 10];
s[t_] := S[t] /. sol[[1, 1]];
i[t_] := J[t] /. sol[[1, 2]];
r[t_] := R[t] /. sol[[1, 3]];
cf1[t_] = (10+0*Tanh[2*(30-t)])/10*β*i[t]*s[t]/1400;

sol = f[1400, β, 7, 0.0002, 9];
s[t_] := S[t] /. sol[[1, 1]];
i[t_] := J[t] /. sol[[1, 2]];
r[t_] := R[t] /. sol[[1, 3]];
cf2[t_] = (9+1*Tanh[2*(30-t)])/10*β*i[t]*s[t]/1400;

sol = f[1400, β, 7, 0.0002, 6];
s[t_] := S[t] /. sol[[1, 1]];
i[t_] := J[t] /. sol[[1, 2]];
r[t_] := R[t] /. sol[[1, 3]];
cf3[t_] = (6+4*Tanh[2*(30-t)])/10*β*i[t]*s[t]/1400;

Plot[{cf1[t], cf2[t], cf3[t]}, {t, 15, 45}, 
PlotRange -> {0, 2}, GridLines -> 
{{29, 30, 31}, {0.1, 0.4, 0.5, 0.6, 0.7, 0.8}}]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

計算の結果,次のグラフが得られた。西浦さんのものと概ね一致する。


図1 SIRモデル+シグモイド関数制限措置による新規感染者数の変化
 (縦軸の単位は万人,横軸の単位は日=3/20を基準とした経過日数,
青:制限なし,オレンジ:80%に制限,緑:20%に制限)


図2 上記に,60%,40%,30%に制限などの場合を加えたもの

なるほど,中途半端な制限ではだめだということか。30%に制限するあたりが増加かどうかの臨界点かもしれない。この度の緊急事態宣言はどの程度の効果があるのだろうか。


2020年4月6日月曜日

奈良コンベンションセンター

4月1日,近鉄奈良線新大宮駅から徒歩10分の大宮通りと三条通りに挟まれた区域に奈良コンベンションセンターがオープンした。近くのホテルマリオットはまだオープンしていなかったが,おしゃれな蔦屋書店は中川政七商店とコラボレーションしながら開店していた。新型コロナウイルス感染症で不要不急の外出を自粛させられている中,用事があったのと,まあ人はいないだろうという予測のもとに探索に出かけた。実際お客さんはほとんどいなかった。地下の駐車場もガラガラだった。

蔦屋書店がおしゃれであることは認めるけれど,本屋の価値の本質はおしゃれにあるわけではないので,あまり好きではない。見掛け倒しのために洋書を壁面に糊付けするセンスには耐えられないのだった(それはここじゃないけど)。もう一つの大問題。理工書がほとんどないのである。しかも数学と物理は妙にかけ離れた場所に存在していた。なんだかなあ。

もちろんビレッジバンガード(こちらはきらいじゃない)とか丸善などの本のアレンジだって好き嫌いはあるのだろうけれど,ジュンク堂にがっつり並んだ理工書のボリュームを見ると安心するのであった。

そんなわけで,文句をいいながらも,無人支払機を試してみるべく久しぶりに文庫本を一冊買って帰った。親切に使い方を教えていただいてありがとうございました。