テレビで(テレビの見過ぎ),東京タワーと東京スカイツリーが同じ高さにみえる場所を探すというのがあった。その場所を結ぶ軌跡は円になっていた。そうなのか。
原点に高さ$h_1$の塔を置き,$x=a\ (a>0)$の点に高さ$h_2\ (>h_1)$の塔を置く。$x$軸上には仰角が等しくなる点が2つあり,$x/h_1 = (a-x)/h_2$と$x/h_1 = (a+x)/h_2$を満たす点であり,$x=\frac{a}{1 \pm h_2/h_1}$ で与えられる。
次に点P $(x,y)$を考えて,この点からの仰角が等しくなるための条件を求めれば,
\begin{equation}
\dfrac{x^2+y^2}{h_1^2} = \dfrac{(a-x)^2+y^2}{h_2^2}
\end{equation}
である。整理すれば以下のように円の方程式が得られる。ここで,無次元の量 $c$を $c=(h_2/h_1)^2-1$と置いた。
\begin{equation}
\begin{aligned}
\bigl\{ ( h_2 / h_1 )^2 - 1 \bigr\} x^2 + 2 a x + \bigl\{ ( h_2 / h_1 )^2 - 1 \bigr\} y^2 = a^2 \\
(x + a/c)^2+y^2=a^2/c *\bigl( 1 + 1/c \bigr) = (a/c * h_2/h_1)^2
\end{aligned}
\end{equation}
中心の位置は先ほど$x$軸上に求めた2点の中点になっている。円の半径は$a/c * h_2/h_1$である。
0 件のコメント:
コメントを投稿