ラベル 量子 の投稿を表示しています。 すべての投稿を表示
ラベル 量子 の投稿を表示しています。 すべての投稿を表示

2019年1月22日火曜日

角運動量の合成への道(4)

角運動量の合成への道(3)からの続き)

次に,スピン1の粒子の軌道角運動量$\boldsymbol{L}$とスピン角運動量$\boldsymbol{T}$の合成を考える。$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{T}$であり,前回までの手順と同様に,$(\boldsymbol{J}^2, J_z) | J M \rangle = (J(J+1)\hbar^2, M\hbar ) | J M \rangle$ となる状態は,$| \ell m \rangle | t \rangle$ の線形結合で表されるとする。

(1)$J_z$を$| \ell m \rangle | t \rangle$に作用させる。
$J_z | \ell m \rangle | t \rangle = (m + t) \hbar  | \ell m \rangle | t \rangle = M  | \ell m \rangle | t \rangle$。したがって,$m=M-t$となる。

(2)$\boldsymbol{J}^2$を$| \ell M-t \rangle | t \rangle$に作用させる。
\begin{equation}
\begin{aligned}
(\boldsymbol{L}^2+\boldsymbol{T}^2+2L_zT_z &+L_{+}T_{-}+L_{-}T_{+})| \ell M-t \rangle | t \rangle \\
= & \sqrt{\ell(\ell+1)-m(m-1)} \sqrt{2-t(t+1)}\ \hbar^2 | \ell m-1 \rangle | t+1 \rangle\\
+ & (\ell(\ell+1)+2+2 m t )\ \hbar^2 | \ell m \rangle | t \rangle \\
+ & \sqrt{\ell(\ell+1)-m(m+1)}\sqrt{2-t(t-1)}\ \hbar^2   | \ell m+1 \rangle | t-1 \rangle
\end{aligned}
\end{equation}
ここで,$\boldsymbol{J}^2$の固有値を決める固有値方程式は次のようになる。
\begin{equation}
\boldsymbol{J}^2 \sum_{t=-1}^1 \alpha_t  | \ell m-t \rangle | t \rangle
= \lambda \sum_{t=-1}^1 \alpha_t  | \ell m-t \rangle | t \rangle
\end{equation}
ここで$\ell(\ell+1)=j$, $m(m\pm 1)=\mu_{\pm}$と略記する。
\begin{equation}
\begin{pmatrix}j+2m & \sqrt{2(j-\mu_{-})} & 0 \\
\sqrt{2(2(j-\mu_{-})} & j+2 & \sqrt{2(j-\mu_{+})}\\
0& \sqrt{2(j-\mu_{+})}&j-2m \end{pmatrix}
\begin{pmatrix} \alpha_{+1} \\ \alpha_0 \\ \alpha_{-1}\end{pmatrix}
= \lambda \begin{pmatrix} \alpha_{+1} \\ \alpha_0 \\ \alpha_{-1} \end{pmatrix}
\end{equation}
この固有値方程式を解くと,$\lambda=(\ell+1)(\ell+2), \ell(\ell+1), \ell(\ell-1)$となる。
また,固有ベクトルの係数は,
\begin{array}{c|ccc}
  \lambda  & \alpha_{+1} & \alpha_{0} & \alpha_{-1} \\
  \hline
 \ell(\ell-1)
& \sqrt{\frac{(\ell-m)(\ell-m+1)}{2\ell(2\ell+1)}}
& -\sqrt{\frac{(\ell+m)(\ell-m)}{\ell(2\ell+1)}}
& \sqrt{\frac{(\ell+m)(\ell+m+1)}{2\ell(2\ell+1)}}  \\
  \hline
 \ell(\ell+1)
& -\sqrt{\frac{(\ell+m)(\ell-m+1)}{2\ell(\ell+1)}}
& \sqrt{\frac{m}{\ell(\ell+1)}}
&\sqrt{\frac{(\ell-m)(\ell+m+1)}{2\ell(\ell+1)}} \\
 \hline
 (\ell+1)(\ell+2)
& \sqrt{\frac{(\ell+m)(\ell+m+1)}{2(\ell+1)(2\ell+1)}}
& \sqrt{\frac{(\ell+m+1)(\ell-m+1)}{(\ell+1)(2\ell+1)}}
&\sqrt{\frac{(\ell-m)(\ell-m+1)}{2(\ell+1)(2\ell+1)}} \\
  \hline
\end{array}


2019年1月21日月曜日

角運動量の合成への道(3)

角運動量の合成への道(2)からの続き)

2つの独立な自由度からなる系の別の例として,1つの粒子が軌道角運動量$\boldsymbol{L}$とスピン角運動量$\boldsymbol{S}$を持つ場合を考える。これらを合成した全角運動量を $\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$とする(2粒子系の場合と同様,より正確には通常の3次元空間とスピン空間に作用する演算子のテンソル積 $\boldsymbol{J}=\boldsymbol{L}\otimes \boldsymbol{1}_S+\boldsymbol{1}_L\otimes\boldsymbol{S}$)。

軌道角運動量$\boldsymbol{L}$の固有状態を$|\ell m \rangle$,スピン角運動量$\boldsymbol{S}$の固有状態を$| s \rangle$とし,その積$|\ell m \rangle | s \rangle$を考える。このとき,次の関係が成り立っている。
\begin{equation}
\begin{aligned}
\boldsymbol{L}^2 |\ell m\rangle = \ell(\ell+1)\hbar^2 |\ell m\rangle, \quad &
\boldsymbol{S}^2 | s\rangle = \frac{3}{4} \hbar^2 |s \rangle, \\
L_z |\ell m\rangle = m \hbar |\ell m\rangle, \quad &
S_z | s\rangle = s \hbar |s \rangle, \\
L_\pm |\ell m\rangle = \sqrt{\ell(\ell+1)-m(m\pm 1)} \ \hbar |\ell m \pm 1 \rangle, \quad &
S_\pm | s\rangle = \sqrt{\frac{3}{4}-s(s\pm 1)} \ \hbar |s \pm 1 \rangle
\end{aligned}
\end{equation}
また,合成角運動量$\boldsymbol{J}$も一般の角運動量の交換関係,$[J_i, J_j]=i\hbar \epsilon_{ijk} J_k$を満足するので,$\boldsymbol{J}^2$と$J_z$の同時固有状態を$|j\mu \rangle$とすると,次の関係が成り立つ。
\begin{equation}
\boldsymbol{J}^2 |j \mu \rangle = j(j+1)\hbar^2 |j \mu \rangle, \quad
J_z |j \mu\rangle = \mu \hbar |j \mu\rangle
\end{equation}
$[\boldsymbol{J}^2,\boldsymbol{L}^2]=0, [\boldsymbol{J}^2,\boldsymbol{S}^2]=0, [J_z,L_z]=0,[J_z,S_z]=0$などが成立するので,$|j\mu\rangle$を$|\ell m \rangle | s \rangle$から構成することができる($[\boldsymbol{J}^2,L_z]\neq 0$や$[\boldsymbol{J}^2,S_z]\neq 0$なので,一般には単独の$|\ell m \rangle | s \rangle$は$\boldsymbol{J}^2$の固有状態ではない)。

(1)$J_z$を$|\ell m \rangle | s \rangle$に作用させる。
\begin{equation}
J_z |\ell m \rangle | s \rangle = (L_z+S_z) |\ell m \rangle | s \rangle = (m+s)\hbar |\ell m \rangle | s \rangle
\end{equation}
したがって,$|\ell m \rangle | s \rangle$は,$J_z$の固有値$\mu\hbar = (m+s)\hbar$の固有状態である。以下,$m=\mu-s$と表記することもある。

(2)$\boldsymbol{J}^2$を$|\ell \mu-s \rangle | s \rangle$に作用させる。
\begin{equation}
\begin{aligned}
\boldsymbol{J}^2 &= \boldsymbol{L}^2+ \boldsymbol{S}^2 + 2 \boldsymbol{L}\cdot\boldsymbol{S} = \boldsymbol{L}^2+ \boldsymbol{S}^2 + 2 L_z S_z + L_{+} S_{-} + L_{-} S_{+} \\
\boldsymbol{J}^2 |\ell \mu-s \rangle |s \rangle &= \{ \ell(\ell+1)+\frac{3}{4} + 2 (\mu-s) s \} \hbar^2 |\ell \mu-s \rangle |s \rangle \\
&+ \sqrt{\ell(\ell+1)-(\mu-s)(\mu+s)} \ \hbar^2 |\ell \mu+s \rangle | -s \rangle\\
&= \{ j^2+2s\mu \}\ \hbar^2 |\ell \mu-s \rangle |s \rangle
+ \sqrt{j^2-\mu^2}\ \hbar^2 |\ell \mu+s \rangle | -s \rangle\\
\end{aligned}
\end{equation}
ここで,$j=\ell+\frac{1}{2}$とし,$s^2=\frac{1}{4}$を用いた。これから,$\boldsymbol{J}^2$の固有状態を構成するために,$|\mathscr{j} \mu\rangle = \alpha |\ell \mu-\frac{1}{2} \rangle |\frac{1}{2} \rangle + \beta |\ell \mu+\frac{1}{2} \rangle | -\frac{1}{2} \rangle$ とする。ただし規格化条件より$|\alpha|^2+|\beta|^2 = 1$である。この2つの独立な状態に対する固有値方程式は $\boldsymbol{J}^2 | \mathscr{j} \mu\rangle = \lambda \hbar^2  | \mathscr{j} \mu\rangle$ であり,$\alpha, \beta$を用いると次のように行列形式で表される。
\begin{equation}
\begin{pmatrix} j^2+\mu & \sqrt{j^2-\mu^2} \\ \sqrt{j^2-\mu^2} & j^2-\mu \end{pmatrix}
\begin{pmatrix} \alpha \\ \beta \end{pmatrix}
= \lambda \begin{pmatrix} \alpha \\ \beta \end{pmatrix}
\end{equation}
この$\alpha, \beta$に対する連立方程式が自明でない解を持つための条件は,右辺を移行して0にしたときの左辺の行列式が0になることであり,$(j^2+\mu -\lambda)(j^2-\mu -\lambda)-(j^2-\mu^2)=0$という$\lambda$の2次方程式になる。$\therefore (\lambda -j(j+1))(\lambda -j(j-1)) = 0$から$\boldsymbol{J}^2$の固有値$\lambda \hbar^2$は,$j(j+1)\hbar^2$と$j(j-1)\hbar^2$である(したがって,$\mathscr{j}=j$ と $j-1$)。

(3)固有状態の構成
上記の$\alpha$と$\beta$の連立方程式に,固有値$\lambda$を代入して,規格化条件とともに$\alpha$と$\beta$を求めると次のようになる。
\begin{array}{c|cc||cc}
  \lambda  & \alpha & \beta & \alpha & \beta\\
  \hline
 j(j+1) & \sqrt{\dfrac{j+\mu}{2j}} & \sqrt{\dfrac{j-\mu}{2j}}
 &\sqrt{\dfrac{\ell+m}{2\ell+1}}  & \sqrt{\dfrac{\ell-m+1}{2\ell+1}} \\
  \hline
 j(j-1)  & \sqrt{\dfrac{j-\mu}{2j}} & -\sqrt{\dfrac{j+\mu}{2j}}
&\sqrt{\dfrac{\ell-m+1}{2\ell+1}}  & -\sqrt{\dfrac{\ell+m}{2\ell+1}}
\end{array}
まとめると,
\begin{equation}
\begin{array}{l}
  \begin{array}{|l|}
  \hline

  \quad |\ j\quad\ \mu\rangle = \sqrt{\dfrac{j+\mu}{2j}} |\ell \mu-\frac{1}{2} \rangle |\frac{1}{2} \rangle+\sqrt{\dfrac{j-\mu}{2j}} |\ell \mu+\frac{1}{2} \rangle | -\frac{1}{2} \rangle \quad (\lambda = j(j+1)) \quad \\
  \quad |j-1\mu\rangle = \sqrt{\dfrac{j-\mu}{2j}} |\ell \mu-\frac{1}{2} \rangle |\frac{1}{2} \rangle-\sqrt{\dfrac{j+\mu}{2j}} |\ell \mu+\frac{1}{2} \rangle | -\frac{1}{2} \rangle \quad (\lambda = j(j-1) ) \quad \\

  \hline
  \end{array} \\
\end{array}
\end{equation}

角運動量の合成へ道(4)に続く)

2019年1月20日日曜日

角運動量の合成への道(2)

角運動量の合成への道(1)の続き)

2つの独立な自由度がある系の例として,スピン$\frac{1}{2}$を持った2粒子の系を考え,この系の合成スピン$\boldsymbol{S}=\boldsymbol{S}_1+\boldsymbol{S}_2$を考える(より正確にいうと,2つの状態ベクトルのテンソル積の状態に作用する演算子のテンソル積を考えるので,$\boldsymbol{S}=\boldsymbol{S}_1 \otimes \boldsymbol{1}_2+\boldsymbol{1}_1 \otimes \boldsymbol{S}_2$が $|s_1\rangle_1 \otimes |s_2\rangle_2$ に作用する。ここでは,演算子は $\boldsymbol{S}=\boldsymbol{S}_1+\boldsymbol{S}_2$とし,状態の方も,$|s_1\rangle  |s_2\rangle$と表記する)。

スピン$\frac{1}{2}$演算子の固有状態を$|\frac{1}{2}s\rangle$ として$\frac{1}{2}$を省略すると,2粒子状態は,$|s_1\rangle |s_2\rangle$と表わされ,次の関係が成立する($ |\pm \frac{3}{2} \rangle = 0$ とする)。
\begin{equation}
\begin{aligned}
\boldsymbol{S}_1^2 |s_1\rangle |s_2 \rangle = \frac{3}{4}\hbar^2 |s_1\rangle |s_2 \rangle,
\quad & \boldsymbol{S}_2^2 |s_1\rangle |s_2 \rangle = \frac{3}{4}\hbar^2 |s_1\rangle |s_2 \rangle \\
S_{1z} |s_1\rangle |s_2 \rangle = s_1\hbar |s_1\rangle |s_2 \rangle,\
\quad & S_{2z} |s_1\rangle |s_2 \rangle = s_2 \hbar |s_1\rangle |s_2 \rangle \\
S_{1\pm} |s_1 \rangle |s_2 \rangle = \hbar |s_1 \pm 1 \rangle |s_2 \rangle,\quad  & S_{2\pm} |s_1\rangle |s_2 \rangle = \hbar |s_1\rangle |s_2 \pm 1 \rangle \\
\end{aligned}
\end{equation}

$\boldsymbol{S}=\boldsymbol{S}_1+\boldsymbol{S}_2$については,一般の角運動量の交換関係$[S_i, S_j]=i\hbar\epsilon_{ijk}S_k$が成立するので,合成スピン角運動量の大きさとz成分の同時固有状態$|S M\rangle$とすると,次の関係が成り立つ。
\begin{equation}
\begin{aligned}
\boldsymbol{S}^2 |S M\rangle &= S(S+1) \hbar^2 |S M\rangle \\
S_z |S M\rangle &= M \hbar |S M\rangle
\end{aligned}
\end{equation}
一方,$[\boldsymbol{S}^2,  \boldsymbol{S}_i^2]=0$, $[S_z, S_{iz}]=0 $などが成り立つので,$|S M\rangle$を2粒子状態から構成することができる(ただし,$[\boldsymbol{S}^2, S_i]\neq0$ なので,一般の $|s_1\rangle |s_2\rangle$ は $\boldsymbol{S}^2$ の固有状態とは限らない)。

(1)$S_z$ を $|s_1\rangle |s_2\rangle$ に作用させる。
\begin{equation}
S_z |s_1\rangle |s_2\rangle = (S_{1z}+S{2z}) |s_1\rangle |s_2\rangle = (s_1+s_2)\hbar |s_1\rangle |s_2\rangle
\end{equation}
したがって, $|s_1\rangle |s_2\rangle$ は,$S_z$ の固有値 $M \hbar =(s_1+s_2)\hbar$ の固有状態である。

(2)$\boldsymbol{S}^2$ を $|s_1\rangle |s_2\rangle$ に作用させる。
  (注: $s_i \neq \pm\frac{1}{2}$の場合は状態ベクトル$ |s_i\rangle$ は0とする)
\begin{equation}
\begin{aligned}
\boldsymbol{S}^2 &= \boldsymbol{S}_1^2+ \boldsymbol{S}_2^2 + 2 \boldsymbol{S}_1\cdot\boldsymbol{S}_2 = \boldsymbol{S}_1^2+ \boldsymbol{S}_2^2 + 2 S_{1z}S_{2z} + S_{1+} S_{2-} + S_{1-} S_{2+} \\
\boldsymbol{S}^2 |s_1\rangle |s_2\rangle &= (\frac{3}{2}\hbar^2 + 2 s_1 s_2 \hbar^2) |s_1\rangle |s_2\rangle  + \hbar^2 |s_1+1\rangle |s_2-1\rangle + \hbar^2 |s_1-1\rangle |s_2+1\rangle
\end{aligned}
\end{equation}
簡単のために,$|s \rangle \rightarrow |+\rangle$ ($s=\frac{1}{2}$の場合),  $|-\rangle$ ($s=-\frac{1}{2}$の場合) と表記すると,
\begin{equation}
\begin{aligned}
\boldsymbol{S}^2  | + \rangle  | + \rangle &= 2\hbar^2  | + \rangle  | + \rangle\\
\boldsymbol{S}^2  | + \rangle  | - \rangle &= \hbar^2  | + \rangle  | - \rangle +  \hbar^2  | - \rangle  | + \rangle \\
\boldsymbol{S}^2  | - \rangle  | + \rangle &= \hbar^2  | - \rangle  | + \rangle +  \hbar^2  | + \rangle  | - \rangle \\
\boldsymbol{S}^2  | - \rangle  | - \rangle &= 2\hbar^2  | - \rangle  | - \rangle
\end{aligned}
\end{equation}
したがって,次のようにして$\boldsymbol{S}^2$の固有状態を構成できる。
\begin{equation}
\begin{aligned}
\boldsymbol{S}^2 ( | + \rangle  | - \rangle +  | - \rangle  | + \rangle) &= 2\hbar^2  ( | + \rangle  | - \rangle +  | - \rangle  | + \rangle)\\
\boldsymbol{S}^2 ( | + \rangle  | - \rangle - | - \rangle  | + \rangle) &= 0  ( | + \rangle  | - \rangle -  | - \rangle  | + \rangle)\\
\end{aligned}
\end{equation}
まとめると,$\boldsymbol{S}^2, S_z$の固有値 $S(S+1)\hbar^2, M\hbar$の同時固有状態 $ | S M \rangle $に対して,
\begin{equation}
\begin{array}{l}
  \begin{array}{|l|}
  \hline

  \quad  | 1 +1 \rangle = |+ \rangle |+ \rangle \quad \\
  \quad  | 1 \quad 0 \rangle = \frac{1}{\sqrt{2}} ( |+ \rangle |- \rangle + |- \rangle |+ \rangle ) \quad \\
  \quad  | 1 -1 \rangle = |- \rangle |- \rangle \quad \\
  \quad  | 0  \quad 0 \rangle = \frac{1}{\sqrt{2}} ( |+ \rangle |- \rangle - |- \rangle |+ \rangle ) \quad\\

  \hline
  \end{array} \\
\end{array}
\end{equation}
$ | 1 M \rangle $がスピン3重項(トリプレット)状態,$| 0 0 \rangle $がスピン1重項(シングレット)状態である。

「人の世の窓打ちにけり冬の雨」(西嶋あさ子 1938-)



2019年1月19日土曜日

角運動量の合成への道(1)

(MathJaxの記号一覧は,このEasy Copy MathJax が便利である。)

 角運動量演算子については,次の交換関係から出発して,固有値と固有状態の議論ができる。一般化された角運動量演算子$\boldsymbol{J}$はエルミート演算子であり,その成分は交換関係$[J_i, J_j] = i \hbar \epsilon_{ijk}J_k$を満足すると仮定する。このとき,$\boldsymbol{J}^2=\sum_{i} J_i^2=\sum_i J_i^\dagger J_i$も固有値が正のエルミート演算子となり,$[\boldsymbol{J}^2, J_i]=0$であることから,$\boldsymbol{J}^2$と$J_z$の同時固有状態$|\lambda \mu \rangle$が存在し,その固有値$\lambda \hbar^2, \mu \hbar $は実数となる($\lambda \ge 0$)。
\begin{equation}
\begin{aligned}
\boldsymbol{J}^2 |\lambda \mu \rangle &= \lambda  \hbar^2 |\lambda \mu \rangle\\
J_z |\lambda \mu \rangle &= \mu  \hbar  |\lambda \mu \rangle
\end{aligned}
\end{equation}
$J_x^\dagger J_x + J_y^\dagger J_y = \boldsymbol{J}^2- J_z^2$の左辺の $|\lambda \mu \rangle$による期待値が正であることから,固有値 $\lambda - \mu^2 \ge 0$が成り立つ。すなわち,$-\sqrt{\lambda} \le \mu \le \sqrt{\lambda}$である。

また,昇降演算子,$J_{\pm}\equiv J_x \pm i J_y$を定義すると,$J_{\pm}\dagger=J_{\mp}$, $[\boldsymbol{J}^2, J_{\pm}]=0$,$ [J_z, J_{\pm}]=\pm \hbar J_{\pm}$, $ [J_+, J_-]=2\hbar J_z$などが成り立つ。

ここで,$J_{\pm} |\lambda \mu \rangle$ がどんな状態かを調べると次のことがわかる。
\begin{equation}
\begin{aligned}
\boldsymbol{J}^2 J_{\pm} |\lambda \mu \rangle &= \lambda \hbar^2 J_{\pm} |\lambda \mu \rangle\\
J_z J_{\pm}|\lambda \mu \rangle &= (\mu\pm1) \hbar J_{\pm} |\lambda \mu \rangle
\end{aligned}
\end{equation}
すなわち,$J_{\pm} |\lambda \mu \rangle = C_{\lambda\mu}^{\pm}\hbar  |\lambda \mu\pm 1 \rangle$。ここで,$C_{\lambda\mu}^{\pm}$は比例定数であり,規格化条件を用いて,$\langle \lambda \mu| J_{\mp} J_{\pm} |\lambda \mu \rangle = |C_{\lambda\mu}^{\pm}|^2  \langle \lambda \mu\pm 1  |\lambda \mu\pm 1 \rangle$ より,$C_{\lambda\mu}^{\pm} = \sqrt{\lambda -\mu(\mu\pm 1)}$
ただし,$J_\mp J_\pm = \boldsymbol{J}^2-J_z^2 \mp \hbar J_z$であることに注意する。

ある固有状態から出発して,昇降演算子$J_{\pm}$を繰り返して作用すると,$\boldsymbol{J}^2$の固有値を共有し,$J_z$の固有値が離散的に変化する一連の固有状態のシリーズが得られるが,これは,固有値$\mu$に対する条件と矛盾することから,$\mu$の上限$\mu_max$と下限$\mu_min$においては比例定数$C_{\lambda\mu}^{\pm}$が0となって,シリーズが中断される必要がある。すなわち,
\begin{equation}
\begin{aligned}
J_{+} |\lambda \mu_{max} \rangle = 0, \quad &C_{\lambda\mu_{max}}^+ = \sqrt{\lambda-\mu_{max}(\mu_{max}+1)} = 0\\
J_{-} |\lambda \mu_{min} \rangle = 0, \quad &C_{\lambda\mu_{min}}^- = \sqrt{\lambda-\mu_{min}(\mu_{min}-1)} = 0
\end{aligned}
\end{equation}
これから,$\mu_{max}(\mu_{max}+1)= \mu_{min}(\mu_{min}-1)$が成り立ち,因数分解すると,$(\mu_{max}-\mu_{min}+1)(\mu_{max}+\mu_{min})=0$となる。$\mu_{max}$と$\mu_{min}$の差は整数$n=0,1,2,\cdots$となることから,$\frac{n}{2}=j$とおいて,この半整数 $j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \cdots$に対して,$\mu_{max}=j, \mu_{min}=-j, \lambda=j(j+1)$となる。そこでこの場合の$\mu$を$m=-j, -j+1, \cdots j-1, j$と書くことにする。

そこで,固有状態と固有値を表すシンボルを$\lambda, \mu$から$j, m$に変えてまとめると,
\begin{equation}
\begin{array}{l}
  \begin{array}{|l|}
  \hline

  \quad \boldsymbol{J}^2 | j m \rangle &= j(j+1) \hbar^2  | j m \rangle \quad \\
  \quad J_z | j m \rangle &= m \hbar  | j m \rangle \quad \\
  \quad J_{\pm} | j m \rangle &= \sqrt{j(j+1)-m(m \pm 1)}\ \hbar  | j m \pm1 \rangle \quad \\

  \hline
  \end{array} \\
\end{array}
\end{equation}