(台風の重さからの続き)
前回は台風の質量と並進運動エネルギーを求めた。次に,台風の重心に対する風の回転運動エネルギーを見積もってみる。そのために,台風の風速分布を調べてみると,中心から50kmあたりをピークとして台風の外側に向けて緩やかに,中心側にむけて急速に減少している。そこで,半径 $R$[m],高度 $h$[m]の台風の平均風速を中心からの距離$ r$[m] の関数として,$v(r)=60(1-r/R) $[ m/s]とモデル化する。中心では過剰に,周辺では過小に評価している。
これを用い,空気の密度を $\rho = 1$ [ kg/m^3] とすると,回転の運動エネルギー$T_R$は,$\int_0^R \rho \pi h r v(r)^2 dr = 5 \pi h R^2 $[J]より,R=500km h=10km の場合,$T_R$=4×10^16 [J]となり,前回求めた並進運動エネルギー5×10^16 [J]と同じオーダとなった,というかかなり粗い見積もり。これらを加えた台風の風の運動エネルギーは 10^17[J]である。
さて,インターネットでこれがリーズナブルかどうか調べてみようとしたが,台風の運動エネルギーについてのわかりやすい情報はほとんどない。どういうことか。日本科学協会の立方体地球には台風ができるの?に,台風の運動エネルギーは10^18[J]とあった。まあまあ正しかった。
Wikipediaにはエネルギーの比較というページがある。日本語版には地震の記述はあるが,台風はない。しかし英語版の Orders of magnitude (energy) には,"Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)" が 5×10^19 [J]とあるので,風のエネルギーは 10^17 [J] でほぼほぼあっているのかもしれない。
0 件のコメント:
コメントを投稿