順序集合:集合Aにある順序 ≦ が定められたとき,それらの組(A,≦)を順序集合,Aを台集合という。Aのどの2元にも順序が定められているとき,≦ はAの全順序であるといい,(A,≦)を全順序集合という。
順序写像:2つの順序写像(A,≦)と(A',≦')があって,AからA'への写像fがある。Aの任意の元,a,bに対して,a≦b ⇒ f(a) ≦' f(b)が成り立つとき,fを順序写像という。
順序同型写像:順序写像において,f(a) ≦' f(b) ⇒ a≦b も成り立つ場合,fは単射になり,これを順序単射という。fが順序単射でさらにAからA'への全射でもある場合,fをAからA'への順序同型写像であるという。
順序同型:順序集合(A,≦)から順序集合(A',≦')への順序同型写像fが存在するとき,両者は順序同型であるといい(A,≦)≃(A',≦')と表記する。順序同型関係は,反射律,対称律,推移律を満足する同値関係である。順序同型ならばAとA'には全単射fが存在するのでAとA'は対等関係(A〜A')になる。その逆は必ずしも真ではない。
双対順序:順序集合(A,≦)があるとき,Aの元a,bに対して,b≦aのときに限り,a≦' bとして関係 ≦' を定義する。これもまたAにおける1つの順序を与えるが,≦' を ≦ の双対順序とよんで, ≦' = ≦^{-1} と表記する。また,(A,≦^{-1})を,順序集合(A,≦)の双対順序集合とよぶ。
※ N, Z, Q は互いに対等な全順序集合ではあるが,どの2つも順序同型ではない?と本にはかいてあるのだけれど,そもそもどんな順序を導入したかを書かずに,順序同型かどうかを判定することはできないだろう。どういうことなのか。
0 件のコメント:
コメントを投稿