前回の一般的な結果を得るまでにあれこれ考えた。普通はアンペールの法則の単純な形態,つまり直線電流のまわりの円周上の磁束密度に対する,$2 \pi r B(r) = \mu_0 I$から出発して一般化するのかと思った。しかし,そもそも簡単なアンペールの法則とは直線電流まわりの磁束密度ベクトル場を与えるもので,答えは既に出ていたのだった。
あれこれの過程での計算は,結局,線積分の練習問題だった。
図:アンペールの法則の線積分経路
方針:磁束密度を測定する点への位置ベクトル$\bm{r}$とその軌跡として経路$C=r(\theta)$を考える。線要素$d\bm{r}$を変数,$r,\theta$であらわし,さらに経路条件から$r$を消去して,線積分要素を$\theta$の関数として表す。磁束密度は$r$の関数なので,これも$\theta$の関数とみることができる。その結果,線積分要素$dB=\bm{B}\cdot d\bm{r}$は$\theta$の関数になって,角度積分を実行することができる。
領域Ⅰ(左図の$0 \le \theta \le \pi/4$):$r=a/\cos\theta$,$dy = a d\theta / \cos^2 \theta$
$dB=\frac{\mu_0 I}{2 \pi} \frac{\cos^2\theta}{a} \frac{a}{\cos^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅱ(左図の$\pi/4 \le \theta \le \pi/2$):$r=a/\sin\theta$,$dx = -a d\theta / \sin^2 \theta$
$dB=\frac{\mu_0 I}{2 \pi} \frac{-\sin^2\theta}{a} \frac{-a}{\sin^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅲ(左図の$\pi/2 \le \theta \le \pi$):$r=a/(\cos\theta - \sin\theta)$
$dB=\frac{\mu_0 I}{2 \pi} \frac{\sin\theta - \cos\theta}{a} \frac{a}{\sin \theta - \cos \theta} d\theta$,$B=\frac{\mu_0 I}{4}$
領域Ⅵ(左図の$\pi \le \theta \le 2\pi$):$r=a$,$d\bm{r} = a (-\sin\theta , \cos \theta) d\theta$
$dB=\frac{\mu_0 I}{2 \pi} \frac{1}{a} a d\theta$,$B=\frac{\mu_0 I}{2}$
領域Ⅴ(右図の$-\pi \le \theta \le \pi$):$r=\sqrt{a^2+d^2+2 a d \cos\theta}$,$d\bm{r} = a(-\sin\theta, \cos\theta) d\theta$
$\displaystyle dB = \dfrac{\mu_0 I}{2 \pi}\int_{-\pi}^{\pi}\dfrac{a(a+d\cos\theta)}{a^2+d^2+2 a d \cos\theta}d\theta = \dfrac{\mu_0 I a}{2 \pi} \int_{-\infty}^{\infty} \dfrac{(a+d)+(a-d) t^2}{(a+d)^2+(a-d)^2 t^2}\dfrac{2 dt}{1+t^2}$
$\displaystyle = \dfrac{\mu_0 I a}{2 \pi a} \int_{-\infty}^{\infty} \Bigl\{ \dfrac{1}{1+t^2} +\dfrac{(a-d)(a+d)}{(a+d)^2+(a-d)^2 t^2} \Bigr\} dt = \dfrac{\mu_0 I}{2\pi} (\pi + \pi) = \mu_0 I$