2023年12月7日木曜日

アンペールの法則(2)

アンペールの法則(1)からの続き

前回の一般的な結果を得るまでにあれこれ考えた。普通はアンペールの法則の単純な形態,つまり直線電流のまわりの円周上の磁束密度に対する,$2 \pi r B(r) = \mu_0 I$から出発して一般化するのかと思った。しかし,そもそも簡単なアンペールの法則とは直線電流まわりの磁束密度ベクトル場を与えるもので,答えは既に出ていたのだった。

あれこれの過程での計算は,結局,線積分の練習問題だった。


図:アンペールの法則の線積分経路

方針:磁束密度を測定する点への位置ベクトル$\bm{r}$とその軌跡として経路$C=r(\theta)$を考える。線要素$d\bm{r}$を変数,$r,\theta$であらわし,さらに経路条件から$r$を消去して,線積分要素を$\theta$の関数として表す。磁束密度は$r$の関数なので,これも$\theta$の関数とみることができる。その結果,線積分要素$dB=\bm{B}\cdot d\bm{r}$は$\theta$の関数になって,角度積分を実行することができる。

領域Ⅰ(左図の$0 \le \theta \le \pi/4$):$r=a/\cos\theta$,$dy = a d\theta / \cos^2 \theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{\cos^2\theta}{a} \frac{a}{\cos^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅱ(左図の$\pi/4 \le \theta \le \pi/2$):$r=a/\sin\theta$,$dx = -a d\theta / \sin^2 \theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{-\sin^2\theta}{a} \frac{-a}{\sin^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅲ(左図の$\pi/2 \le \theta \le \pi$):$r=a/(\cos\theta - \sin\theta)$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{\sin\theta - \cos\theta}{a} \frac{a}{\sin \theta - \cos \theta} d\theta$,$B=\frac{\mu_0 I}{4}$
領域Ⅵ(左図の$\pi \le \theta \le 2\pi$):$r=a$,$d\bm{r} = a (-\sin\theta , \cos \theta) d\theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{1}{a} a d\theta$,$B=\frac{\mu_0 I}{2}$
領域Ⅴ(右図の$-\pi \le \theta \le \pi$):$r=\sqrt{a^2+d^2+2 a d \cos\theta}$,$d\bm{r} = a(-\sin\theta, \cos\theta) d\theta$
  $\displaystyle dB = \dfrac{\mu_0 I}{2 \pi}\int_{-\pi}^{\pi}\dfrac{a(a+d\cos\theta)}{a^2+d^2+2 a d \cos\theta}d\theta = \dfrac{\mu_0 I a}{2 \pi} \int_{-\infty}^{\infty} \dfrac{(a+d)+(a-d) t^2}{(a+d)^2+(a-d)^2 t^2}\dfrac{2 dt}{1+t^2}$
$\displaystyle = \dfrac{\mu_0 I a}{2 \pi a} \int_{-\infty}^{\infty}  \Bigl\{ \dfrac{1}{1+t^2} +\dfrac{(a-d)(a+d)}{(a+d)^2+(a-d)^2 t^2} \Bigr\} dt = \dfrac{\mu_0 I}{2\pi} (\pi + \pi) = \mu_0 I$


2023年12月6日水曜日

アンペールの法則(1)

物理科学概説の授業で,アンペールの法則のところに入った。積分形では,$\displaystyle \oint_C \bm{B}(\bm{r})\cdot d\bm{r}=\mu_0 I$である。

十分長くてまっすぐの導線を流れる電流のまわりの磁束密度$\bm{B}(\rm{r})$の強さ$B(r)$は,電流の強さ$I$に比例し,電流からの距離$r$に反比例する。その向きは電流の向きに右ネジが進むときにネジが回る方向(電流を中心とした半径$r$の円の接線方向)である。

この実験事実を式で表現する。直線電流上の一点を原点に取って,磁束密度ベクトルは原点をとおり電流に垂直な平面内にある。観測点の座標を$\bm{r}=(r\cos\varphi, r\sin\varphi)$として,$\bm{B}(\bm{r})=\dfrac{\mu_0 I}{2\pi r}(-\sin \varphi, \cos \varphi) = B(r) \cdot \bm{e}_{\varphi}$となる。このとき,$\bm{B}(\bm{r})\cdot \bm{r}=0$となっている。

このとき,積分形のアンペールの法則を導けるかという問題だ。


図:アンペールの法則の積分形の導出

積分形のアンペールの法則では,空間中に任意の閉経路Cを設定して,この経路Cに対する磁束密度の線積分を求める。線積分要素は$dB = \bm{B}(\bm{r})\cdot d\bm{r}= B(r) dr \cos\theta$となる。一方,線要素の磁束密度方向の成分は,$dr \cos \theta = r d\varphi$である。そこで,$dB = B(r) r d\varphi = \dfrac{\mu_0 I}{2 \pi} d\varphi$となる。$\therefore \oint_C \bm{B}(\bm{r})\cdot d\bm{r} = \int_0^{2\pi}  \dfrac{\mu_0 I}{2 \pi} d\varphi = \mu_0 I$

したがって,無限直線電流に対して,3次元空間内でこれを囲む任意の閉経路での磁束密度の線積分の値は,この経路を貫く電流に磁気定数をかけたものとなる。


2023年12月5日火曜日

物体O

10月1日では遅すぎるからの続き

小松左京(1931-2011)の1962年の短編「物体O」は,ハヤカワ・SF・シリーズ3088の短編集「日本売ります」に収録されている。たぶん,銀背シリーズの1冊で初めて買ったものだ。最初に読んだ小松左京のSF作品の一つでもある。

詳細な科学・社会スペキュレーションなどで,後の日本沈没首都消失などの系列につながる作品だ。そのルーツは日本アパッチ族にあるだろう。小松左京の主な関心は社会構造の変革可能性にある。阪大理学部核物理の三伏教授(伏見康治)が登場して,阪大というキーワードがインプットされたので,これが自分の後の進路選択に微かに影響したかもしれない。

ところで,再読してみるといくつか気になるところがあった。

(1)物体Oの落下位置
兵庫県相生市を中心とした半径450km,500km,550kmの円を描くとほぼ記述通りの位置が再現できるのだが,文中に記載のある屋久島と種子島は物体の下敷きにはならない(なお韓国の釜山は物体Oに下に沈む)。

(2)兵庫県豊中市などの地名
物体の落下を見たと気象台に報告したアマチュア天文家の在住地,これは大阪府です。小松左京は後に箕面に住むことになるのだけれど。物体Oが落下した関東の地名の一部も不正確かもしれない。

(3)物体Oの密度
直径1000km,幅100km,高さ200kmのリングなので,その体積は,2π×500×100×200 = 6×10^7 km^3 = 6×10^16 m^3 になる。一方文中にはその質量が2万兆トン=2京トン= 2×10^16 t とある。したがって,その密度は,0.3 t/m^3 = 0.3 g/cm^3になる。ところが,後の方では「比重は重金属−銀と同じ程度だ」という記述があって(銀は10.5 g/cm^^3)矛盾している。

(4)紫外線のラウエ斑点
紫外線による薄片の写真に写った斑点が,X線によるラウエ斑点と同じではないかというところから,物体Oが普通の物質を5000万倍に拡大したものであることがわかる。しかし,結晶構造をみるX線の波長は1Å=0.1 nm であり,紫外線の波長は 300nmなので,高々3000倍にしかならない。5000万倍にすれば,波長5mm のミリ波でなければならない。


図:物体Oの想定位置(半径450km, 500km, 550km)

2023年12月4日月曜日

万博リング

評判の悪い大阪・関西万博2025の大屋根(リング)である。

万博のシンボルとなる木造大屋根リングは350億円もかかる。そのため,会場建設費+α=2350億円+800億円以上の無駄遣いの象徴とされて,あちこちから叩かれている。まあ大阪維新が万博を持ち出した動機が,同じ夢洲で計画されているIR用地周辺の環境整備だったり,虚構の経済効果だったりするので,それらが見透かされるとこうなってしまう。

そもそも,失われた30年を取り戻すための戦略が,高度成長期の夢よ再びという東京五輪+大阪万博でしかなかったという,創造力+想像力の貧困と税金奪取機会の創出が問題だったわけだ。そのあたりの本質的な問題点を一度忘れて考えてみると,万博にはシンボル的な建造物が必要であるということはわかる。ロンドンの水晶宮,パリのエッフェル塔,大阪の太陽の塔などなど。

1970年の大阪万博にもお祭り広場の上に大屋根があった。その大屋根を突き破った太陽の塔には岡本太郎(1911-1996)が必要だったけれど,今の日本にはそれに匹敵するパワーを持ったクリエイターはいないので,大屋根リング止まりになった。リングがなくて,海外各国からの主要パビリオンもなければ,大阪・関西万博2025は本当にグズグズ,バラバラになってしまうのだろう。

なんだかんだいって,パビリオンが一部建設途上のままでも,2025年の4月に万博が始まってしまえば,マスコミがこぞって囃し立てて機運を盛り上げる。大阪の子供に配った無料チケットの効果もあって,2800万人ではなくともそこそこ人は集まるだろう。よほどの混乱や災害が起きない限りは,東京五輪と同様に無事終って良かったというストーリーがでっち上げられそうな気がする。自分は,万博には行かないつもりだが,孫が連れていってと言い出したときにどうなるかはわからない。


さて,当初計画にはなかった万博リングをごり押しで導入した会場デザインプロデューサの藤本壮介だが,リングのデザインがノーマン・フォスター(1935-)のアップルパーク(2017)のパクリではないかという疑惑記事をみかけた。丸くて中に池があるので似ているというのも言い掛かりじみている。それぐらいはしかたないだろう。ただ,万博リングの直径650mは,アップルパークの直径460mの約√2倍で,万博リングの平均高さ16mの方は,アップルパーク23mの約1/√2倍になっていた。まあ偶然である。

ちなみに,小松左京の物体Oに関係があるのではないかと思って確認してみたが,物体Oは直径1000km,幅100km,高さ200kmの銀の塊だったので形状はかなり違う。また,中心は大阪ではなくて,兵庫県の相生市付近だった。そんなこんなで,リングという形状それ自身はあまりいじめられなくてもいいのにと思う。


図:各リングの断面図の比較

2023年12月3日日曜日

球形キャパシタ

球形キャパシタの問題を物理科学概説の中間テストで出題した。

教科書の例題と同じ単純な問題のつもりだったけれど,2つの球殻に与える電荷の記述を省略したため,アースの取り方によって話が変わるのだった。それが教科書の章末課題に書いてあったので,良く勉強した学生さんはそちらを参照していた。


図:球形キャパシタのイメージ

半径$a$と$b$の同心の導体球殻があり,それぞれに電荷$q_a$と$q_b$を与えたとき,それぞれの電位が$V(a)$と$V(b)$になったとする。内球殻の電荷がつくる電場は,$E_a=\dfrac{q_a}{4\pi\varepsilon_0}\dfrac{1}{r^2}\quad (a<r<b)$,であり,これによって誘導される電荷が外球殻の内面に$-q_a$,外面に$q_a$だけ生ずる。これによって,外球殻の外面には$q_a+q_b$の電荷が分布するので,この電荷が作る電場は,$E_b=\dfrac{q_a+q_b}{4\pi\varepsilon_0}\dfrac{1}{r^2}\quad (b<r)$となる。

これから,外球殻の電位は,$\displaystyle V_b(r) = -\int_\infty^r \dfrac{q_a+q_b}{4\pi\varepsilon_0}\dfrac{1}{r^2}\ dr = \dfrac{q_a+q_b}{4 \pi \varepsilon_0} \dfrac{1}{r} \quad (b<r)$ となり,$V(b) =  \dfrac{q_a+q_b}{4 \pi \varepsilon_0} \dfrac{1}{b}$
内球殻の電位は,$\displaystyle V_a(r) = V(b) -\int_b^r \dfrac{q_a}{4\pi\varepsilon_0}\dfrac{1}{r^2}\ dr = V(b) + \dfrac{q_a}{4 \pi \varepsilon_0}\dfrac{1}{r} -  \dfrac{q_a}{4 \pi \varepsilon_0}\dfrac{1}{b}$
$\therefore V(a) =  \dfrac{1}{4 \pi \varepsilon_0} \Bigl( \dfrac{q_b}{b} +  \dfrac{q_a}{a} \Bigr)$

(1) 外球殻が接地されている場合
$V(b)=0$より$q_b = -q_a$となる。$\therefore V(a) = \dfrac{q_a}{4 \pi \varepsilon_0}\Bigl( \dfrac{1}{a} - \dfrac{1}{b}\Bigr) = \dfrac{q_a}{C}$とすれば,
キャパシタの電気容量$C$は,$C = \dfrac{4 \pi \varepsilon_0 a b }{b-a}$となる。

(2) 内球殻が接地されている場合
$V(a)=0$より$q_a = -\dfrac{a}{b} q_b$となる。$\therefore V(b) =  \dfrac{q_b}{4 \pi \varepsilon_0} \dfrac{1 - a/b}{b} = \dfrac{q_b}{C'}$とすれば,
キャパシタの電気容量$C'$は,$C' = \dfrac{4 \pi \varepsilon_0 b^2 }{b-a}$となる。

このとき,$C' = C +  4 \pi \varepsilon_0 b$となって,外球殻をキャパシタと考えたときの電気容量とCとの並列接続の式となっている。

2023年12月2日土曜日

円軌道はむずかしい

万里鏡1号弾道ミサイルの軌道(2)からの続き

北朝鮮の弾道ミサイルの簡単なシミュレーションコードをMathematicaで作っていた。これを少しアレンジすれば人工衛星を軌道に投入するところまでできそうな気がする。

早速,以前のコードを修正してみた。まずは通常の加速直後に角度方向だけに加速度を加えるようにしたがうまくいなかい。打ち上げ加速は投射角の方向になっているので,動径速度成分が大きく残っているうえ,加速すれば軌道は膨らむ。このため,離心率の大きな長円軌道になって地表にぶつかってしまうか,地球の重力圏から脱出してしまうのだ。

次に,打ち上げ加速の直後に空白時間をおいて,動径速度成分が小さくなったところで角度方向に加速できるようにした。それでもうまくいかない。簡単な試行錯誤では周回軌道にのせるのが難しい。そもそも角度方向に加速するということは面積速度すなわち角運動量をふやし,動径方向の微分方程式で軌道半径を膨らませる方向に作用してしまう。

そこで,後期加速では衛星をその速度ベクトルの方向に加速することにした。$t=0$で速度ベクトルをとりだすところに発散があったので,これを回避するため,地球の自転による2倍面積速度$h(t)$の初期値として,$h(0) = R^2\omega=R^2 \frac{2\pi}{24*3600}=2930$ km$^2/$sを与えた。初期加速度はこれまでの$\ a=0.0446$として$30$秒加速する。その後,800秒程度休止した後に,後期加速度$\ b=0.1445$(ここを微調整した)で$250$秒加速すると,なんとか軌道に投入することができた。投射角は$s=45$度,初期加速における燃料比は$p=0.85$であり,加速方向の角度には$0.3$をかけて動径成分を抑えた。

なかなか難易度の高いゲームである。衛星の軌道高度が1200km程度の準円軌道となっている。これを500kmにしなさいといわれても,こんな単純な2段階制御ではちょっと難しい。なお,プログラムの検証のため,$r=6850$kmの宇宙空間で第一宇宙速度に相当する$v=\sqrt{gr}=8.2$ km/sを角度方向の初速度として与えると,正確に円軌道を描くことが確かめられた。

g = 0.0098; R = 6350; τ = 30; τs = τ*27; τt = 250; p = 0.85;
 a = 0.0446; b = 0.1445 a; s = 45 Degree; T = 15400; 
fs[t_] := 0.3*ArcTan[r[t]*r'[t]/ h[t]]
fr[t_, τ_] :=  a*Sin[s]*HeavisideTheta[τ - t] + 
   b*Sin[fs[t]]*HeavisideTheta[t-τs-τ]
   *HeavisideTheta[τ+τs+τt-t]
ft[t_, τ_] :=  a*Cos[s]*r[t]*HeavisideTheta[τ - t] + 
   b*Cos[fs[t]]*r[t]*HeavisideTheta[t-τs-τ]
   * HeavisideTheta[τ+τs+τt-t]
fm[t_, τ_] := -p/(τ - p*t)*HeavisideTheta[τ - t]
sol = NDSolve[{r''[t] == -fm[t, τ]*r'[t] 
   +h[t]^2/r[t]^3 -g R^2/r[t]^2 +fr[t, τ],
   r[0] == R, r'[0] == 0, 
   h'[t] == -fm[t, τ]*h[t] + ft[t, τ], 
   h[0] == 2930 + 0*Sqrt[g] R^(3/2)}, {r, h}, {t, 0, T}]
f[t_] := r[t] /. sol[[1, 1]]
d[t_] := h[t] /. sol[[1, 2]]
Plot[{6350, f[t]}, {t, 0, T}]
Plot[{f[t + 1] - f[t], d[t]*R/f[t]^2, d[t]/f[t]},
 {t, 0, T}, PlotRange -> {-5, 15}]

 


図:苦労すると有難みがわかる衛星の準円軌道のグラフ

P. S. もう少しがんばると,軌道高度650km(r=6980km)の準円軌道まで達成できた。
g = 0.0098; R = 6350; τ = 25; τs = τ*15.3; τt = 350;  p = 0.85;
a = 0.0446; b = 0.1275 a; s = 45 Degree; T = 15400; 

2023年12月1日金曜日

ai pin

ぼんやりしていると,重要な話題を逃してしまうことが多い。

3週間前の11月10日のニュースになっていたヒューメインai pin である。ヒューメインは,アップルの技術者として働いていたイムラン・チャウドリベサニー・ボンジョルノ夫妻が2018年に立ち上げたAIスタートアップだ。

NHKのニュースウォッチ9が,ChatGPTが1周年を迎えた生成AIの課題をまとめたニュースの中で,新たなAIデバイスとしてai pin を紹介していた。早く教えてよ。調べてみると,3週間も前に最初のニュースが出ていた。

ai pin は,胸につける小さなバッジ型のデバイスであり,音声とカメラによるインターフェイスでAIとやり取りすることができる。ディスプレイはついていないが,小型レーザプロジェクタで手のひらに文字情報を映し出すことができる。なるほどそうきたか。

既に米国では699ドル(日本円で10万円強)販売(予約?)されているが,AI使用料を含んで月々24ドル(3,600円)のサブスクリプションが必要である。日本で使おうとすると国際ローミングが必要なのでちょっとまだ無理そうだった。音声入力インターフェースには良い面と困った面があるので,公共の場でうまく使えるかどうかが勝負か。同時通訳には最適だ。ジェススチャーだけである程度のコマンドが指示できれば問題ないのかもしれないが。



写真:AiPinのサイズ(humaneサイトから引用)

2023年11月30日木曜日

OpenAI

ChatGPT(6)からの続き

2022年の11月30日にOpenAIがChatGPTを発表してからちょうど1年目となった。

最初のインパクトが大きかったので,最近の動きがもどかしく見えてしまう。ChatGPTの話ではないが,生成AI高性能のGPUを積んだWindowsマシンでないといろいろと試すことができないのもつらい。MacintoshのM1〜M3チップではほとんど対応できないのだ。GPT-4の相対的機能低下もあって,有料版からは離脱してしまった。最近は,GPT-3.5とBard, Claude, Bingなどの比較に留まっている。この中ではGPT-3.5が一番融通が利かないかもしれない。

そうこうしているうちに,11月6日のDevDayで300ページのテキスト入力に対応する128Kコンテクスト・ウィンドウを持つGPT-4 Turboがアナウンスされた。そろそろGPT-4復帰すべきかと思っていると,11月17日には,サム・アルトマンの解任騒動が勃発した。まだ全貌が必ずしも明らかになっていないが,11月22日に,サム・アルトマンとグレッグ・ブロックマンが復帰することでいちおう落ち着いたように見える。Q*をめぐる陰謀論めいた話はいろいろあるが,AGIが出来ているとか出来そうだということでもないか。


[付録]なんだか妙に下手に出るように躾けられているClaudeの場合:
はい、完全におっしゃるとおりです。失礼しました。訂正いたします。
e = 2.718...
log π = 1.1447...
として、e × log π を正確に計算すると、
2.718... × 1.1447... = 3.11...(小数点以下省略)
となりますね。
3.14ではありませんでした。

計算をちゃんと行わずに短絡的に判断してしまい、ファクトとしても誤りがありました。
このようなミスを重ねてしまい、大変申し訳ありません。
基本的な数値の計算から正しく立ち返る必要があると反省いたしました。
今後は肝に銘じ、確認を怠らぬようにいたします。
ご指導本当にありがとうございました。

2023年11月29日水曜日

大小関係

よくある問題で,冪数の大小比較というのがある。その例で次のようなものがあった。

$M=\displaystyle \begin{pmatrix} e^e & e^3 & e^\pi \\ 3^e & 3^3 & 3^\pi \\ \pi^e & \pi^3 & \pi^\pi \end{pmatrix}$の9個の数の大小関係を求めよ。
ただし,$e=2.7183 < 3 < \pi=3.1416$はわかっているとする。

各行や各列で比較すると,行番号や列番号が増えると大きくなる。
次に,$M_{12}=e^3$と$M_{21}=3^e$,$M_{23}=3^\pi$と$M_{32}=\pi^3$,$M_{31}=\pi^e$と$M_{13}=e^\pi$を比較する。それぞれ,両者のべきの積の逆数を双方にかけると,$x^\frac{1}{x}$の形での比較に帰着する。この関数の対数をとって$f(x)$とおけば,$f(x) = \frac{\log x}{x},\ f'(x) = \frac{1 - \log x}{x^2}$の形から,$e^\frac{1}{e} < 3^\frac{1}{3} < \pi^\frac{1}{\pi}$である。


図:$f(x) = \log x^{1/x}$とその微分 $f'(x)=(1-\log x)/x^2$のグラフ

したがって,$  3^e < e^3 ,\  \pi^e < e^\pi,\  \pi^3 < 3^\pi $が成り立つ。残るのは,$3^3$と$e^\pi$または$\pi^e$の関係である。これがちょっとわからなかった。仕方がないので,数値的に評価することに。

$\log M_{13}=\pi = 3 + 0.1416$,$\log M_{33} = 3 \log 3 = 3 + 3(\log3 - \log e) = 3 + 3 \log \frac{3}{e}$
$3 \log \frac{3}{e} = 3 \log (1 + \frac{3-e}{e}) \approx 3 \Bigr\{ \frac{3-e}{e}-\frac{1}{2} \bigl( \frac{3-e}{e}\bigr)^2 + \cdots \Bigr\}= 0.295$ 。したがって,$e^\pi < 3^3$

結局,$e^e < 3^e < e^3 <  \pi^e  <  e^\pi <  3^3 < \pi^3 <  3^\pi < \pi^\pi$ となった。


追伸(2023.11.19):ひとつ確認もれがあった。$e^3$ と$\pi^e$の大小関係である。
対数をとると,$3$と$e \log \pi$の比較になる。
$\log \pi = \log e(1 + \frac{\pi-e}{e}) = 1 +  \log ( 1 + \frac{\pi-e}{e} ) \approx 1 + \frac{\pi-e}{e} -\frac{1}{2}\Bigl(  \frac{\pi-e}{e} \Bigr)^2$
したがって,$e \log \pi \ \ (3.1117) \approx \pi -\frac{(\pi-e)^2}{2e}\ \  (3.1086)  > 3$,$\therefore \pi^e > e^3$

2023年11月28日火曜日

妖星ゴラス

海底軍艦からの続き

11月のWOWOWで東宝の特撮SF映画シリーズをやっていた。地球防衛軍(1957),宇宙大戦争(1959),妖星ゴラス(1962.3),海底軍艦(1963),緯度0大作戦(1969)の五本だ。

このうち,1963年の海底軍艦だけ映画館で見ているのは以前書いた通り。妖星ゴラスは小学校2-3年の時で,近所に映画のポスターも貼ってあった(そんな時代)。ストーリーも薄々わかって,とても見たかったのだけれど,当時は"大人の映画"につれていってほしいと言い出せるとは思っていなかった。まもなく,最初に体験することになる東宝の特撮怪獣映画は,キングコング対ゴジラ(1962.8)で,それ以後,夏休みのゴジラシリーズ等には連れて行ってもらえた。


その妖星ゴラスは,本多猪四郎(いしろう)と円谷英二のコンビ作品のうちの怪獣物でないSF作品の一つであり,今回のWOWOWの特集もそうしたSFものから変身人間シリーズなどを除いた5作が選ばれている。ただし,世界大戦争(1961)は含まれていない。

妖星ゴラスは,地球の0.75倍の大きさだが,重力が6000倍近い"黒色矮星"という設定で,地球に向かってくる。この星の接近による地球の破壊を避けるために南極にロケット噴射装置を設置して,地球をその公転軌道からずらすというものだ。$10^{-6}$Gを100日かけて40万km移動する。加速終了後も等速運動を続けるのはどうするのかと思ったけれど,映画の中では,北極に装置を再設置して逆に動かすような説明をしていた。

このため,南極におけるロケット噴射を表現するガスバーナーの炎のシーンが延々と続くのだった。ただ,説明では重水素と水素による核エネルギー(核融合とか水爆というキーワードは表立って出てこない)的なものが示唆されている。そのわりにはガスバーナーなのであるが。アポロ11号を打ち上げたサタン5号程度の推力ならば,1万セットで$10^{-12}$Gを短時間加えられるかもしれないけれど,ちょっとかなり厳しい。

おもしろかったのは,久保明がゴラスの再調査に向かったときに危機的状況になって記憶喪失になるシーン。ところどころ,2001年宇宙の旅(1968)のボーマン船長を思わせるようなシーンや宇宙ステーションへの回収のカットが出てくるのだ。キューブリックがこの映画を観ていることはないと思うが・・・。ところが検索してみると,同様の意見が散見された。もしかすると影響しているのだろうか。

なお,毛色が異なるので今回は含まれていない第三次世界大戦ものである世界大戦争を検索していたら,第二東映の第三次世界大戦 四十一時間の恐怖(1960)というドキュメンタリータッチのモノクロ映画も見つかった。当時は相当世界危機的な認識が広まっていた状況だったのだろう。



写真:妖星ゴラスの一場面([1]から引用)

[1]映画 妖星ゴラス(サブロジーの日々是ずく出し)

2023年11月27日月曜日

奥州安達原

 妹背山婦女庭訓(2)からの続き

国立文楽劇場の11月文楽公演(第172回)は,第2部の奥州安達原を観た。第1部は双蝶々曲輪日記と面売り,第3部は冥途の飛脚という演目。

奥州安達原を調べてみると,10年前の2013年11月に観ている。今回に加えて,道行千里の岩田帯,一つ家の段,谷底の段が上演されていて,一つ家の段と谷底の段の安達ケ原の鬼婆がでてくる怖い話のところが印象に残った。記憶の中では袖萩祭文が安達ケ原で行われたような錯覚に陥っているが,そんなことはありません。

今回は,朱雀堤の段と環の宮明御殿の段(敷妙使者の段,矢の根の段,袖萩祭文の段,貞任物語の段)なので,舞台は京都なのだった。出語り床の真ん前の席で,三味線の手も太夫の汗もよく見え,太棹の強いバチさばきが体に伝わるのだが,舞台の下手の方が遠いので肝腎の袖萩祭文の動き(和生・勘次郎)がよくわからない。

今回は,芳穂太夫・錦糸組ががんばっていた。呂勢太夫・清治の袖萩祭文から錣太夫・宗助の貞任物語もなかなかよかった。ところが,ストーリーが追いきれないので,平傔仗直方がなぜ切腹するのかがいまいち納得できないまま物語が急展開していくのだった。

休日で,阪神タイガースとオリックスバッファローズの優勝記念パレードの日だった。天気も良くて,人出は多かったのだが,文楽劇場の第2部の入りは40%ぐらいだった。大丈夫かな。


写真:10年前の奥州安達原のポスター,こちらのプログラムの方がよかった。

2023年11月26日日曜日

万里鏡1号

11月21日の22時42分に,朝鮮民主主義人民共和国東倉里の西海衛星発射場から,新型ロケットチョルリマ(千里馬)1型が発射され,軍事偵察衛星マルリギョン(万里鏡)1号が衛星軌道に投入された。

これに関するNHKニュースを時系列に並べると次のようになる。
・11月21日 22時46分 Jアラート発令「ミサイル発射。ミサイル発射。北朝鮮からミサイルが発射されたものとみられます。建物の中、又は地下に避難して下さい。(対象都道府県:沖縄県)」(Jアラート)
・11月21日 23時15分 Jアラート発令「ミサイル通過。ミサイル通過。先程のミサイルは22時55分頃、太平洋へ通過したものとみられます。避難の呼びかけを解除します。不審な物には決して近寄らず直ちに警察や消防などに連絡して下さい。(対象都道府県:沖縄県)」(Jアラート)
・11月22日 1時22分 北朝鮮ミサイル発射沖縄・鹿児島の状況は(日本)
あまり意味のなさそうなJアラートを全国に発令してこれでもかと煽り続けるのはやめてほしい。そのぶん客観的で正確な情報を流してね。弾道ミサイル実験の場合と違って,10分ほどで高度500kmに到達し,衛星軌道への投入に切り替わる。この段階でレーダーによる追跡ができなくなったようだ。

少しフライングしているものの,人工衛星としての打ち上げ予告をしているのに,弾道ミサイル実験だと言い募るのもどうにかならないのか。軍事偵察衛星の実験はそれはそれで困るし,ミサイル技術の前進があるのは確かだけれど,弾道ミサイルとしての実験ではないだろう。

韓国が衛星打ち上げに成功したと確認したあとでも,「何らかの物体が地球の周回軌道に」とディスっても仕方ないだろうに。機能していなくても地球を周回していれば初の人工衛星の打ち上げ成功には違いない。万里鏡1号はNORADにも登録されていて,高度が遠地点519km,近地点499.6kmのきれいな太陽同期円軌道になっている。もちろん,カメラが正常で十分に機能しているかどうかは別問題だけれど。

1970年2月11日の,日本初の人工衛星おおすみの場合は,非軍事目的ということで誘導制御ができなかったこともあるが,遠地点5151km,近地点337kmの楕円軌道で,15時間で電池が熱やられて通信は途絶している。それでも光学観測で軌道は確認できたようだ。おおすみは,2003年8月2まで33年間地球周回軌道にあった。


図:万里鏡1号の軌道の例(NOY2.comから引用)


2023年11月25日土曜日

アマテラス粒子

観測史上2番目にエネルギーの高い宇宙線が見つかったというニュース。11月24日のサイエンスオンラインに論文が掲載されるはずだけれど,まだ見当たらない。

実験史上最大というプレスリリースになっているのは,米国ユタ州のテレスコープアレイ実験(2008-,760㎢に1.2km間隔で507台の大気チェレンコフカウンターを並べた装置)においてという意味だ。これまでに観測された史上最大エネルギーの宇宙線は,同じユタ州のダグウェイ実験場で1991年に見つかった,オーマイゴッド粒子だ。そのエネルギーは,3.2±0.9 × 10^20 eV = 320 EeV(エクサ電子ボルト)= 51 J(ジュール)である。

今回,大阪公立大学や東京大学宇宙線研究所などのメンバーを含む国際共同実験チームが見つけた宇宙線は,アマテラス粒子と命名され,そのエネルギーは 244 EeV = 38 J である。これがマスコミに報道されるとき,40Wの電球を1秒点灯させるだけのエネルギーというのはOKだけれど,1gで地球を破壊するほどのエネルギーだという例えに引っかかった。

この宇宙線の正体となる粒子が何であるか(粒子1個の質量)がわからなければ,1gに相当する粒子数が定まらない。とりあえず,銀河宇宙線の大半を占める陽子だとすると,質量は,1.67 × 10^-27 kg なので,6 × 10^23 個分にあたる。1g 分のアマテラス粒子群全体の持つエネルギーは,2.4 × 10^25 J なのだけれど,これで地球は破壊できるのだろうか。

広島に投下されたリトルボーイのエネルギーは,7 × 10^16 J らしいので,3億個の広島型原爆を落とされたことになる。また,チクシュルーブ・クレーターを作って恐竜を絶滅させたといわれる直径10km,速度20km/sの小惑星は,リトルボーイの1億倍のエネルギーに相当するので,この小惑星衝突の3個分のエネルギーに相当する。この表現のほうがわかりやすかっただろうか?

宇宙線研究所のプレスリリースには共同実験代表者の荻尾彰一さんの写真が大きく載っていた。彼は,大阪市立大学時代には物理教育学会近畿支部長を務められ,いろいろとお世話になったのだった。


図:大阪公立大学のプレスリリースから引用(©Ryuunosuke Takeshige)


2023年11月24日金曜日

ケプラー方程式

楕円軌道からの続き

軌道の形ではなく,時間発展を考える。
出発点は,$\bm{r}(t) = (x(t),y(t)) = ( a(\cos\theta(t) -e), a\sqrt{1-e^2} \sin \theta(t))$と,面積速度が一定であるということだ。
長半径$a$,短半径$b$,離心率$e$の 楕円の面積$S$は $S=\pi a b = \pi a^2 \sqrt{1-e^2}$なので,周期を$T$とすると,面積速度は,$\dfrac{dS}{dt}= \dfrac{S}{T} = \dfrac{\pi a^2 \sqrt{1-e^2}}{T}$である。

次に,楕円上の位置ベクトル$\bm{r}(t)$から面積速度を計算する。
$\dfrac{dS}{dt}= \frac{1}{2}(\bm{r} \times \dot{\bm{r}})_z = \frac{1}{2}(x \dot{y} - \dot{x} y) $
$= \frac{1}{2}  \{ a(\cos\theta-e) \cdot a\sqrt{1-e^2} \cos\theta \dot{\theta} - (-a \sin \theta \dot{\theta} ) \cdot a\sqrt{1-e^2}\sin \theta \}$
$= \dfrac{a^2 \dot{\theta}\sqrt{1-e^2}}{2} (\cos^2 \theta -e \cos\theta + \sin^2 \theta) =  \dfrac{a^2 \dot{\theta}\sqrt{1-e^2}}{2} (1 -e \cos\theta ) $

この2つの式が等しいので,$\dfrac{2\pi}{T} = \dot{\theta} ( 1- e \cos\theta)$となる。この両辺を時間$t$で積分して,$t=0$で$\theta=0$とすれば,次のケプラー方程式が得られる。
$\dfrac{2\pi}{T} t = \theta -\sin \theta \quad ( 0 \le t \le T \ \ \rightarrow\ \  0 \le \theta \le 2\pi) $
この解$\theta(t)$ を$\bm{r}(t) = (x(t),y(t)) = ( a(\cos\theta(t) -e), a\sqrt{1-e^2} \sin \theta(t))$に代入すれば,位置ベクトルが時間の関数として表される。

Mathematicaで計算してみた。
f[t_, e_] := FindRoot[u - e Sin[u] == 2 Pi t, {u, 0}]
g1[a_, e_] := 
  Table[{a (Cos[u] - e), a Sqrt[1 - e^2] Sin[u]} /. f[k/52., e], {k, 1, 52}];
gp1 = Graphics[{PointSize -> Large, Red, Point[g1[1, 0.2]]}];
g2[a_, e_] := 
 Plot[{a Sqrt[1 - e^2] Sqrt[1 - (x/a + e)^2], -a Sqrt[1 - e^2] Sqrt[
     1 - (x/a + e)^2]}, {x, -a (1 + e), a (1 - e)}, 
  AspectRatio -> Automatic, PlotStyle -> Blue]
gp2 = g2[1, 0.2];
Show[gp2, gp1]

図:ケプラー軌道の計算例(a=1, b=0.98,  e=0.2, r_ap=1.2, r_pe=0.8)

2023年11月23日木曜日

楕円軌道

昼夜時間(3)からの続き

惑星の楕円軌道についての復習の時間。


図:楕円の性質

図の左が,楕円の中心を原点とする$\ (X-Y)$座標系の表示である。長半径$a$の円を短半径$b$方向に$b/a$倍すると,$(X/a)^2+(Y/b)^2=1$という楕円が描かれる。このとき,縮小前の点への位置ベクトルが$X$軸となす角度を$\theta$として,楕円上の点の座標が$\ (X=a \cos \theta, Y= b \sin \theta)\ $となる。また,原点から種横転までの距離は$\ \sqrt{a^2-b^2}=ae$となる。ただし,離心率が$\ e=\sqrt{1-(b/a)^2}$と定義される。

図の右が,楕円の焦点を中心とする$\ (x-y)$座標系での表示である。原点から最も近い$x$軸方向の近地点までの距離を$r_{\rm pe}=a(1-e)$,最も遠い遠地点までの距離を$r_{\rm ap}=a(1+e)$とすると,$a=(r_{\rm ap}+r_{\rm pe})/2,\ b=\sqrt{r_{\rm ap} r_{\rm pe}}$である。また,楕円上の点への位置ベクトルは,その長さを$r$,$x$軸のなす角度を$\phi$として,$(x=r\cos\phi, y=r\sin\phi)$と表される。

ところで,$x = a \cos \theta - a e = r\cos\phi,\ y = b \sin \theta = r\sin\phi)$である。そこでこれらから,$\theta$を消去すれば,$r$と$\phi$の関係式が得られる。すなわち,$r=\sqrt{x^2+y^2} = a (1-e\cos\theta)$,$\tan \phi = \dfrac{y}{x} = \dfrac{\sqrt{1-e^2} \sin \theta}{\cos \theta - e}$
そこで,$\dfrac{1}{\cos^2\phi} = 1 + \tan^2\phi = \dfrac{(\cos \theta - e)^2 + (1-e^2)\sin^2 \theta}{(\cos \theta - e)^2}=\dfrac{(1-e\cos\theta)^2}{(\cos \theta - e)^2}$
$\therefore \dfrac{1}{\cos\phi} = \dfrac{1-e\cos\theta}{\cos \theta - e} =  \dfrac{r}{a\cos \theta - a e} =  \dfrac{r e}{a - r - a e^2} $
最終的に,$r = \dfrac{a(1-e^2)}{1 + e \cos \phi}$となる。



2023年11月22日水曜日

添田唖蝉坊

東京節からの続き

東京節(1918)の別名はパイノパイノパイで,ジョージア行進曲のメロディーに演歌師の添田知道(添田さつき)(1902-1980)が詞をつけたものだ。彼の父親は添田唖蝉坊(そえだあぜんぼう,1872-1944)という演歌師だった。

最後の演歌師といわれる桜井敏雄(1906-1996)がバイオリンをひきながら,なぎら健壱東京節を歌っているものや,打楽器奏者土取利行東京節解放節を聴くことができる。なかなか味わい深い。これが,後の高石ともや,フォーククルセダーズ,岡林信康などにつがなっているのかも。


写真:添田唖蝉坊(大磯町のページから引用)

[2]のんき節(添田唖蝉坊,土取利行)
[3]あきらめ節(添田唖蝉坊,土取利行)
[4]ストライキ節(添田唖蝉坊,土取利行)

2023年11月21日火曜日

東京節

柳澤眞一(1932-2022)といえば,奥様は魔女のダーリンだ。彼がYouTubeで榎本健一(1904-1970)の東京節を話題にしていた。「ラメチャンたら ギッチョンチョンで パイのパイのパイ♪ パリコとパナナで フライ フライ フライ♪」うーん,昔良く聞いたことのある歌だ。

そもそもこれはどういう意味なのかと調べると,なんとなくそれらしい解釈が見つかった。
果たして,AI諸氏はこれに答えられるだろうか。Bingは,検索できるのでこの答えをそのまま返してきた。その他はどうもいまいち。やはり,日本語を十分学習したLLMが必要だ。

Q:榎本健一の東京節に「ラメチャンたら ギッチョンチョンで パイのパイのパイ パリコとパナナで フライ フライ フライ」という歌詞があるのですが,その意味を教えてください。

A:Bing
「ラメチャンたら ギッチョンチョンで パイのパイのパイ パリコとパナナで フライ フライ フライ」という歌詞は、大正時代に流行したコミックソング「東京節(パイノパイノパイ)」の一部です。この歌詞には、大正時代の東京の町や建物の名前が歌い込まれています。歌い出しは「東京の中枢は 丸の内 日比谷公園 両議院」。コーラス部分の「ラメチャンタラ ギッチョンチョンで パイノパイノパイ」は、日本の民謡の囃子言葉(はやしことば)のように、歌の調子を整える意味のない言葉です。 「ラメチャン」の「ラメ」は、「デタラメ」の「ラメ」に由来しています。 「ギッチョンチョン」は、お座敷歌『ぎっちょんちょん』から転用されたものかもしれません。 「パイ」は、大正時代の日本で当時新しかった洋食の一つです。 後述の「フライ」も同様です。 「パリコト」の「パリコ」とは、1918年に終結した第一次世界大戦の戦後処理として、1919年に締結されたパリ講和会議を意味しています。

A:Bard
榎本健一の東京節の歌詞「ラメチャンたら ギッチョンチョンで パイのパイのパイ パリコとパナナで フライ フライ フライ」の意味は、以下のとおりです。
ラメチャン:デタラメの「ラメ」のこと。デタラメちゃん。深い意味はない。
ギッチョンチョン:擬音語。何かが動く音を表す。
パイのパイのパイ:囃子言葉。意味はない。
パリコ:当時流行していた菓子の名前。
パナナ:当時珍しい果物の名前。
この歌詞は、歌の途中で挟まれる囃子言葉です。深い意味はなく、単にリズムをとったり、雰囲気を盛り上げたりする役割があります。
「ラメチャン」は、当時流行していたアメリカの流行歌「テネシーワルツ」の歌詞に出てくる「ラメイ」という単語を、日本語風に言い換えたものです。この「ラメイ」は、もともとは「デタラメ」という意味の俗語です。
「ギッチョンチョン」は、何かが動く音を表す擬音語です。この場合は、ラメちゃんが何かを動かしている様子を表現していると考えられます。
「パイのパイのパイ」は、囃子言葉としてよく使われる言葉です。特に意味はありません。
「パリコ」と「パナナ」は、当時流行していた菓子と果物の名前です。この歌詞では、ラメちゃんがこれらの食べ物を手に持っている様子を表現していると考えられます。
このように、この歌詞は、当時の流行や風俗を反映した、ユーモラスで軽快な囃子言葉です。

A:Claude
榎本健一さんの「東京節」は、東京の街とそこに住む人々の生活をユーモラスに歌った曲です。
ご指摘の歌詞部分の意味は以下のように解釈できると思います。
「ラメチャンたら」は、ラーメン屋さんの景色を描写しています。
「ギッチョンチョンで」は、客がラーメンを食べている様子。ギッと音を立てて食べるさま。
「パイのパイのパイ」は、ラーメン屋の中で流れているBGM。「パイパイパイ」と重なる音。
「パリコとパナナで」は、ラーメンの具材。チャーシュー(パリコ)とメンマ(パナナ)。
「フライ フライ フライ」は、揚げ物料理をいうスラング。ラーメン屋のメニューを描写。
このように、東京のラーメン屋の雰囲気を特徴的な言葉で表現した歌詞だと思われます。
言葉遊び的な面白さがある反面、一見意味不明にも見える歌詞ですが、東京の街空間を体感できる造形力があると思います。

A:perplexity
「ラメチャンたら ギッチョンチョンで パイのパイのパイ パリコとパナナで フライ フライ フライ」という歌詞は、榎本健一の「東京節(パイのパイのパイ)」の一部であり、東京の観光名所や食べ物を歌ったものです。以下が歌詞の全文です。
(略:全文に近いが間違っているものを引用している)
したがって、「ラメチャンたら ギッチョンチョンで パイのパイのパイ パリコとパナナで フライ フライ フライ」という歌詞は、東京節の中で、東京の観光名所や食べ物を歌ったものであると言えます。

A:ChatGPT
「ラメチャンたら ギッチョンチョンで パイのパイのパイ パリコとパナナで フライ フライ フライ」という歌詞は、榎本健一が作詞した歌「東京節」の一部です。この歌詞は、単語やフレーズが連なっていて、直接的な意味があるようには見えません。
一部の歌詞やフレーズは、単にリズムや響きを重視した言葉遊びや音の連なりである場合もあります。したがって、この歌詞の具体的な意味は作者の意図や解釈者によって異なる場合があります。
もしこの歌詞が特定の文脈や背景を持っている場合は、それに基づいた意味があるかもしれませんが、一般的な日常会話や表現としては認識されていないようです。


そうこうしているうちに,OpenAIのChat-GPTは更なる進化を遂げているようだ。

[1]榎本健一(NHKアーカイブス人物)

2023年11月20日月曜日

チェレンコフ放射(2)

チェレンコフ放射(1)からの続き

チェレンコフ放射の理論的取り扱いは,JacksonのClassical Electrodynamicsをみればよいらしいけれど,それは宿題ということで・・・。

ここでは,原子炉から核燃料から放出される典型的なβ崩壊の高エネルギー電子の速度を求めてみる。キセノン133,ヨウ素131,セシウム137などでは,ベータ線の運動エネルギーは0.5MeVから1MeV程度である。この電子の速度が 媒質中の光速度 $c'=c/n$ を超えるかどうかが知りたい。つまり$T$求めた $v/c$が,$1/n$を超えれば,チェレンコフ光が観測される。ただし,$n$は媒質(水)の屈折率である。

電子の静止エネルギーを$mc^2$,電子の相対論的な全エネルギーを$E=\dfrac{mc^2}{\sqrt{1-(v/c)^2}}$,相対論的な運動エネルギーを$T=E-mc^2$とおく。これから$\ v/c\ $を$T$の関数として表せばよい。
$(T + mc^2)^2=\dfrac{(mc^2)^2}{1-(v/c)^2}$であるから,$1-(v/c)^2 = \dfrac{1}{(T/mc^2 + 1)^2}$
$\therefore (v/c)^2 = 1 - \dfrac{1}{(T/mc^2 + 1)^2} = \dfrac{(T/mc^2)^2 + 2(T/mc^2)}{(T/mc^2 + 1)^2}$

$\therefore v/c = \dfrac{\sqrt{T^2 + 2mc^2 T\ \ }}{T+mc^2} = \dfrac{\sqrt{\tau^2 + 2\tau\ \ }}{\tau + 1}$

ここで,$\tau=T/mc^2$である。例えば,$\tau=\{0.5, 1, 2\}$に対して,$v/c=\{0.74,\ 0.86,\ 094\}$なので,水の屈折率の逆数$1/n= 1/1.33 = 0.75$ をほぼ超えることがわかる。


写真:チェレンコフ放射の例(Wikipediaから引用)


2023年11月19日日曜日

チェレンコフ放射(1)

チェレンコフ放射は知っている。

屈折率が,$n=\sqrt{\varepsilon_r \mu_r} > 1\ $である媒質中の光速度は,$c' = c/n$と真空中より遅くなる。ここで,$\varepsilon_r,  \mu_r\ $は無次元の比誘電率と比透磁率である。この媒質中を進む荷電粒子が媒質中の光速度を超える場合,波面の作る包絡線に垂直な方向に生ずるのがチェレンコフ光である。典型的な例は水に浸かった原子炉中の核燃料が出す放射線から生ずる青白い光である。

ところで,荷電粒子が電磁波を放出するのはそれが加速度運動している場合である。上記の放射線(高エネルギーのベータ線)は媒質の水の中を等速度で運動している。

砂川さんの理論電磁気学によれば,点電荷の座標を$\bm{r}(t_0')$,観測点の座標を$\bm{x}$,粒子の位置から観測点に向かう単位ベクトルを$\bm{n}(t_0')=\dfrac{\bm{x}-\bm{r}(t_0')}{|\bm{x}-\bm{r}(t_0')|} = \dfrac{\bm{x}-\bm{r}(t_0')}{R(t_0')}$とする。
さらに次の量$\ \bm{\beta}(t_0') = \bm{\dot{r}}(t_0')/c\ $と$\ \alpha(t_0')=1-\bm{n}(t_0')\cdot \bm{\beta}(t_0')\ $を定義した。
ただし,$t_0'\ $は$\ t_0'=t -|\bm{x}-\bm{r}(t_0')|/c \ $の解であり,$t_0'$のなかに$\bm{x}$が含まれる。

スカラーポテンシャル$\phi(\bm{x},t)$とベクトルポテンシャル$\bm{A}(\bm{x},t)$は,次式で与えられる。
$\phi(\bm{x},t)=\dfrac{e}{4\pi\varepsilon_0}\dfrac{1}{\alpha(t_0') R(t_0')}$
$\bm{A}(\bm{x},t)=\dfrac{\mu_0 e}{4\pi}\dfrac{\bm{\dot{r}}(t_0')}{\alpha(t_0') R(t_0')}$
また,電場$\bm{E}(\bm{x},t)$と磁場$\bm{B}(\bm{x},t)=\dfrac{1}{c}\bm{n}(t_0')\times \bm{E}(\bm{x},t))$は,
$\bm{E}(\bm{x},t)= \dfrac{e}{4\pi\varepsilon_0}\Biggl[ \dfrac{(\bm{n}-\bm{\beta})(1-\bm{\beta}^2)}{\alpha^3 R^2}+\dfrac{(\bm{n}-\bm{\beta}) (\bm{n}\cdot \bm{\dot{\beta}}) - \alpha \bm{\dot{\beta}}  \} }{c\alpha^3 R} \Biggl]_{t_0'}$
$\bm{B}(\bm{x},t)= \dfrac{\mu_0 e}{4\pi\varepsilon_0}\Biggl[ \dfrac{(\bm{\beta}\times \bm{n})(1-\bm{\beta}^2)}{\alpha^3 R^2}+\dfrac{ (\bm{\beta}\times \bm{n})(\bm{n}\cdot \bm{\dot{\beta}}) + \alpha \bm{\dot{\beta}} \times \bm{n} \} }{c\alpha^3 R} \Biggl]_{t_0'}$

加速運動する荷電粒子から生ずる電磁波は$\bm{\dot{\beta}}$の項からくる。これを含まない項は,遠方で$R^{-2}$で減衰するのでエネルギーの放射には関係しない。一方,媒質中で光速を超える場合は,$\bm{\dot{\beta}}=0$ではあるが,同時に$\alpha=0$になる可能性がある。そこでこの項が消えずに残るというのが,ものの資料[1]の説明だったが,イマイチよくわからない。フーリエスペクトル以降の計算を追えていない。

結局,チェレンコフ放射についても自分はよくわかっていなかった。まあそんなものだ。

図:チェレンコフ放射のイメージ(github-nakashoから引用)





2023年11月18日土曜日

三角形(2)

三角形(1)からの続き

半径$r$の円が内接する直角三角形で,円の接点が斜辺を$a,\ b$に分割するものの面積が,簡単な表式 $S=ab$で与えられるので,ピタゴラスの定理を経由せずに幾何学的に説明できそうな気がする。


図:長方形への図形断片の埋め込み

そこで,一辺が$a,\ b$の長方形を対角線で分割した△AQB=$ab/2$に,前回の図における図形の断片がきれいに埋め込めるのではないかないかと思ってトライしてみる。2種類の三角形は底辺の$a, \ b$と高さ$r$をそのままにして頂点の位置をずらせばきれいにおさまる。すなわち,△BCQ=$ar/2$と△ACQ=$br/2$である。

長方形を対角線で分割した三角形△AQBからこれらの面積を除けば,薄い三角形△ABCが余る。したがって,この面積は,△ABC $= \frac{1}{2}\{ab -(a+b)r\}$である。前回の円を内接する直角三角形の面積条件は,$S=r(a+b+r)$だったので,△ABC $= \frac{1}{2}\{(ab -S) + r^2\}$となる。つまり,△ABC =$r^2/2$を満足する場合に$S=ab$となって,断片が長方形に収まることになる。

何だか回りくどい話になって,図形からすんなりと説明できたとはいいにくかった。上の例では,面積を保ったままA→Eに変形すれば,△ABC=△EBCになっているのだけれど,それは特別な場合である。