2019年11月8日金曜日

TEAC LP-R550

TEACターンテーブル/カセット付きCDレコーダー LP-R550が壊れてしまった。先日,新大阪にあるTEAC修理センターに持ち込んだところ,修理不能のため,有料で新品のLP-R550USBに交換され送られてきた。家にあるレコードを聴くためのミニマムのセットである。

大学時代の下宿ではSONYのラジカセを愛用し,レコードを聴くのは自宅に帰省したときに限られていた。あ,そうではない。妹が隣棟の2Fに下宿していて,SONYのオーディオセットを買っており,レコードはそこで聴いていた。あれは,たぶん1978年に彼女が結婚した際に持って行ったはずだ。

1981年に自分が結婚したときには,テクニクスのシンプルなコンボを買った。父が亡くなる前にこれを金沢に持って行ったのは,レコードを聴いてもらうためだっただろうか。その後,廃棄して後継はSONYにしたのだが,こちらのほうは記憶にすらない。このころから購入したSONY製品の劣化が進んで,テレビやビデオなども軒並みにすぐ調子が悪くなった。

CDの時代になってレコードは聴かなくなったと思ったら,iPod全盛期を迎え,家族全員が持っていた。そのうちCDも買わなくなり,レンタルCDをダビングする時代になった。iPodはiPhoneに移行し,ついにstreamingの時代になってしまった。CDの全盛期は1985年から2005年までしか続かなかった。で,再びアナログレコードの復権である。かな?


    

写真:テクニクスの1980年頃のモデル(Technicsより),TEAC LP-R550USB(TEACより)

2019年11月7日木曜日

子ども提灯行列

中原中也の「金沢の思い出」には次の文があった。

「今以てそれは不思議といへば,一度町内の子供が全部揃つて,忠臣蔵の真似をして練り歩いたことがある。長い列であつた。その先頭ではホラ貝を吹いてゐた。子供達ばかりでやつたことゝしては統制があり過ぎた。あれは親達も手を貸したのであらうか? それともあゝした習慣が金沢にはあつたのであらうか?」

これ,百万石まつりのときに行われる小学生の子ども提灯太鼓行列のことかと思った。しかし,金沢百万石まつりが始まったのは,1952年の商工まつりから。あるいはルーツを辿っても,尾山神社での封国祭に合わせて,1923年(大正12年)から1945年(昭和20年)まで金沢市祭として行われてきた奉祝行事ということなので,中原中也が金沢にいた1912-1914年とはあわない。

自分たちが提灯行列に参加したのは小学校5年のときだったのではないかと思う。泉野小学校の校庭に集まり,兼六園の付近まで全員で移動する。そこには市内の小学生が終結しており,夕方になると各校下にむけて,赤い提灯を掲げながら行進した。寺町通りをある程度進むと自宅が近くなるので,流れ解散となったような気もするし,もう暗くなった夜道を小学生がばらばらと帰って行くのも危ないと思うがどうだったのか。

行列の行進の際は,金沢市民の歌(金沢市歌のほうではない)石川県民の歌など(小学校でよく練習している)をみんなで声を張り上げてうたい気勢をあげるのであった。たぶん,何かのDNAで中也の思い出と結ばれているような気がした。


2019年11月6日水曜日

中原中也と金沢

NHKEテレの「にほんごであそぼ」は良い。今は亡きうなりやベベン(国本武春)や文楽の竹本織太夫(豊竹咲甫太夫)や鶴澤清介,野村萬斎など豪華出演陣とよく練られた構成が相俟ってたまに見るととても良い。

昨日は,中原中也(1907-1937)の「サーカス(山羊の歌)」の一部を織太夫・清介コンビが朗読していた。朗読というのかな「ゆあーん ゆよーん ゆやゆよん」だけなので。

この詩「サーカス」は中也の金沢時代(1912-1914)の印象がヒントになっているといわれている。青空文庫には「金沢の思ひ出」という小文があり,中也が父に連れられて軽業の興行を見に行った神明館横の空地で,映画館神明館の弁士の息子とやりとりする場面が記されている。この神明館は犀川を寺町台地側に渡ったすぐにある今の神明宮にあった。

この神明宮で私の父の芳一が小林小児科の院長と若いときに喧嘩したと聞いたことがある。その院長の息子の小林博人君は皮膚科医になったが,小学校から高等学校までの同級生だ。野田中の2年のときは同じクラスだったので,特に仲よくしていた。マジカルミステリーツアー,ハローグッドバイ,レディマドンナの時代のビートルズに感化されたのは彼からだった。寺町で小林小児科のあとに皮膚科医として開業していたが,後に病院勤務になっていた。

中原中也の金沢でのゆかりの場所について,金沢の思い出の文を辿りながらたいへん詳しく調べているのがこちらのブログ記事「中原中也の金沢の思い出」である。若干付け加えるとするとタカジアスターゼの弟やその三男の話がある。タカジアスターゼとは高峰譲吉のことである。「高峰譲吉博士③ルーツ高峰譲吉博士④金沢の所縁の地を歩く」によれば「高峰家の菩提寺は,金沢市寺町5丁目の臨済宗国泰寺で,高峰家のお墓には、譲吉博士の父、母、弟3人、妹3人がまつられています」,また「譲吉博士は、大正2年(1913)5月2日,亡き両親の法要のためこの国泰寺を訪れ,金沢第一中学で講演もしています。当時,寺町,大桜向いに弟の家が有ったと聞きます」とのことで,中原中也はちょうどこの時に,高峰譲吉のその弟の家の隣に住んでいたと思われる。

2019年11月5日火曜日

南円堂と北円堂

家人に勧められて,興福寺国宝特別公開【南円堂,北円堂】に行った。秋晴れの爽やかな朝,すでに30人ほどが興福寺に設置された特別展の ticket counter に並んでいた。重要文化財南円堂では,東向きの国宝木造不空羂索観音菩薩座像(康慶作)のまわりに国宝木造四天王立像(康慶作)が多聞天(北東)持国天(南東)増長天(南西)広目天(北西)と囲んでおり,本尊の左手と右手の脇に国宝木造法相六祖座像(康慶作)が玄賓,行賀,常騰と玄昉,善集,神叡が据えてあった。南円堂よりひとまわり小さな国宝北円堂には国宝木造弥勒如来座像(運慶作)の背後に国宝木造無著菩薩立像と世親菩薩立像(運慶作)が,脇の左右に法苑林菩薩と大妙相菩薩が,そして国宝木心乾漆造四天王立像が囲んでいる。

運慶の無著菩薩は前回見たときは凄い印象があったが今回は弥勒如来ともども,康慶の迫力に負けてしまった。南円堂は何周もして四天王像の特徴を観察した。両足の上げ方や火焔光背の炎の向きの対称性,両手に持つ武具と宝物,衣装や兜,体型などすべてが緻密に計算されて形造られて本尊の周りを囲んでいた。一般に,四天王は持国天(東)増長天(南)広目天(西)多聞天(北)とそれぞれの守護範囲が決まっているのだが,本尊の向きとこの四方を護持する関係で実際の方位は異なる場合もあるようだ(見張りのお坊さんに尋ねてみた応答からの推測)。

その後,再建された中金堂にも回ってみたが,こちらは着飾った新婚外国人カップルがプロカメラマンを従えて中金堂を背景に記念スチール写真の撮影会をやっているような状況で,これはこれで大変雰囲気にマッチしていたが,中に収められた江戸時代の釈迦如来座像などは今一つだった。国宝木造四天王立像や重要文化財薬王・薬上菩薩立像なども再建された中金堂の空間の雰囲気になじめず,残念な状況だった。


写真:南円堂と北円堂(撮影 2019.11.05)

2019年11月4日月曜日

反対称テンソルと対称和

ある量の対称和が必要な場合がある。これを,レヴィ=チヴィタ記号$\varepsilon_{ijk}$で表現する例をいくつか考えてみた。$\varepsilon_{ijk}^2 = (1-\delta_{ij}) (1-\delta_{jk}) (1-\delta_{ki})$が成り立つような気がする。
\begin{equation}
\begin{aligned}
A_1 B_2 C_3 + A_2 B_3 C_1 + A_3 B_1 C_2 &= \dfrac{1}{2} \sum_{ijk} (\varepsilon_{ijk} + \varepsilon_{ijk}^2) A_i  B_j C_k\\
A_1 B_2 B_3 + A_2 B_3 B_1 + A_3 B_1 B_2 &= \dfrac{1}{2} \sum_{ijk} \varepsilon_{ijk}^2 A_i  B_j B_k\\
A_1 + A_2 + A_3 &= \dfrac{1}{2} \sum_{ijk}\varepsilon_{ijk}^2 A_i
\end{aligned}
\end{equation}

2019年11月3日日曜日

民間試験導入としての記述問題

大学入学共通テストへの英語の民間試験導入は,幅広い層の反対論をベースに萩生田のオウンゴールがアシストとなって,11月1日の共通ID提出開始のタイミングで延期となった。『11月1日に文部科学大臣から、令和3年度大学入学者選抜から導入予定であった英語民間試験活用のための「大学入試英語成績提供システム」の導入を見送るとの発表がありました

しかし,文部科学省は,もう一つのベネッセ案件である国語・数学における記述試験はこのまま進めると主張している。その問題点については,「大学入試改革「炎上」の裏に潜むもう1つの火種英語のみならず数学と国語でも民間試験導入」で指摘されている。結局すべてが,公共財を私企業へ売り渡たす利権モデルということか。大阪維新と完全に相似形の安倍政権。

[1]高校も大学も頭を抱える「センター試験改革」あまりにも多すぎる問題点(2019.1.19)
[2]高等教育局大学振興課説明資料(2019.2.12)
[3]英語だけじゃない…大学入試改革の「国語記述式問題導入」の害悪(2019.11.01)
[4]残る選択肢は「センター試験」続行?英語の次は国語……大学入試改革で起こるドミノ倒し(2019.11.06)

2019年11月2日土曜日

Makie.jl

Juliaのパッケージ Grassmann.jl がリニューアルされたというニュースが伝わってきたので,早速調べてみたら, Makie.jl を用いたベクトル場の流線表示の図形が載っていた。Makieは日本語の蒔絵に由来してネーミングされた,GPUを用いる高機能なjulia用グラフィックスのパッケージのようだ。

さっそく,Makie.jlをPkg.add("Makie") してみたがなかなかうまくいかない。そもそも例題が実行できないのだ。あの物性理論の永井祐紀さんが,「Juliaで綺麗なプロットを作る:Makie.jlのインストールと使い方」という記事を2018年12月に書いていたので,早速試してみた。

まず,AbstractPlotting.jlとMakie.jl と GLMakie.jl をインストールせよとある。そうなのか。
サンプルはすべて,FileIO.jl を使って,save("filename.png", scene)としている。そうなのか。ちなみに,ファイルに保存せずに直接画面に出力しようとすると,No renderer could be found for output. It has the following MIME types: というエラーが出てしまう。

とりあえず,指示に従うと,サンプルファイルはほぼ再現できたが,残念ながら,minimum( ) があるものはすべて,収束しないエラーで挫折してしまった。あと,streamplotの中のvectorfieldやlinesの中のpointなどがないといわれる。何が足りないのか?

成功した例は次のようなもの。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
using AbstractPlotting

 x = range(0, stop = 2pi, length = 80)
 f1(x) = sin.(x)
 f2(x) = exp.(-x) .* cos.(2pi*x)
 y1 = f1(x)
 y2 = f2(x)

 scene = lines(x, y1, color = :blue)
 scatter!(scene, x, y1, color = :red, markersize = 0.1)

 lines!(scene, x, y2, color = :black)
 scatter!(scene, x, y2, color = :green, marker = :utriangle, markersize = 0.1)
 save("graph.png",scene)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

図 Makieを用いた関数のプロットの例



2019年11月1日金曜日

ブルーシート

ブルーシートの記事があった。日本のトップメーカーで,岡山県にある萩原工業が,化学繊維のフラットヤーン技術を確立して,1965年にブルーシートの原型の万能シートを売り出す。最初はオレンジ色だったのが,カドミウムが含まれるという誤ったウワサを払拭するため,1970年代にブルーになった。国産シートの9割のシェアを持つが,最近は中国産が主流となっているなど,興味深い話だった。耐久性等,品質の観点からは輸入品には負けないらしい。
米国ではカラーコードによって強度と厚みが共通化されており
 青=ライト・デューティ=0.13-0.15 mm
 黄色/オレンジ=ミディアム・デューティ0.18-0.20 mm
 緑=ミディアム・デューティ=0.23-0.25 mm
 シルバー=ヘビーデューティ=0.28-0.30 mm
 茶=スーパーヘビーデューティ=0.41mm
ということで,アシスト瓦のシルバーはこれに相当するということなのだろうか。

2019年10月31日木曜日

沖縄

沖縄に旅行したことが2回ある。

1度目は1977年に,神戸港から真鍋さんペアに見送られながら船で与論島へ向かう米島誠二君との二人旅。与論島に2泊した後の那覇は,沖縄返還後間もない時期で,到着した晩は食べたステーキはアメリカのように?安かった。船を降り,当日の宿泊先を決めていない我々のような旅行者に宿を案内する人が集まってきた。1500円でいいよというおじさんの言葉に誘われて,国際通りの北(辻のあたりだったろうか)の民宿に2泊ほどした。当時は,返還後の1975年に沖縄復興のてこ入れとして沖縄国際海洋博覧会が開かれた後の沖縄旅行ブームが終わり,民宿の経営はたいへんだったのだろう。首里城跡の博物館や,守礼の門まで歩いたような気がする。まだ,首里城の復元は始まっていなかった。帰りも牧志市場から国際通りに向けて歩いて下った。毒のある大きなカタツムリは触らないように注意しなければならない。

2度目は 家族旅行だ。1992年に復元が完成して数年後の首里城を訪れた。子どもたちが小学生の頃だったと思う。宿泊は沖縄中部にあるビーチ(かりゆしビーチ?)のリゾートホテルで,子どもたちと午後から半日海水浴をしただけで,南国の強い日光にやられてしまった。夕食後どんどん体調が悪くなり,水風呂で癒そうとしたが,皮膚呼吸ができずに苦しんだ。翌日,首里城観光へ向ったが,太陽光線を浴びると苦しいので,日陰を選びながらやっとの思いでたどりついた。そんなわけで,首里城の印象より,日焼けで苦しんだ思い出の方が強いのであった。


2019年10月30日水曜日

アシスト瓦

今年の秋は豪雨の被害が続いている。特に千葉から北関東や東北にかけてがたいへんだ。暴風で屋根瓦が破損した状態で,豪雨が襲うという状況のようだ。昨年の大阪北部地震での屋根瓦の被害はまだ回復しておらず,ブルーシートがかかったままの家屋が非常に多い。こうした屋根瓦の破損にたいする応急的な措置として,ブルーシート張に加え,簡易なアシスト瓦で欠けた瓦を補完するアイデアが考えられた。

特定非営利活動法人レスキューアシストの中島武志さんが考案したもので,30cm角の段ボールを防水・対紫外線仕様のシルバーシートでくるみ,防水テープで周囲を止めたものだ。千葉の台風15号の被害に対して緊急支援を募ったところ,全国からアシスト瓦が集まった

[1]アシスト瓦の作り方(レスキューアシスト)

2019年10月29日火曜日

船弁慶

NHKの「にっぽんの芸能」で船弁慶をやっていたので,これは,義経千本桜とどんな関係になっているのか調べようとしたところ,滋賀県立大学能楽部にたどりついた。農学部ではない。これはなかなか素晴らしいサイトだ。謡曲三百五十番集入力やたがらすナビもよい。

2019年10月28日月曜日

ディオファントス方程式 $x^3+y^3+z^3=n$(3)

ディオファントス方程式$x^3+y^3+z^3=n$(2)からの続き)

3つの立方数の和について

 Andrew Bookerが,$x^3+y^3+z^3=n$の$n=33$の解を求めたというニュースを聞いたのは今年の3月のことだった(33は3つの立方数の和で表される)。その時点で未発見で残っていた2桁の解は,$n=42$だけだった。先月のはじめに,彼らのチームがこれを発見したようだ。1000以下で残された$n$は,114, 390, 579, 627, 633, 732, 921, 975の8つとなった。

(-80,538,738,812,075,974)^3 + (80,435,758,145,817,515)^3 + (12,602,123,297,335,631)^3 = 42

[1]ディオファントス方程式$x^3+y^3+z^3=n$(1)(2019.3.13)
[2]Sum of three cubes for 42 finally solved – using real life planetary computer
[3]Craking the problem with 33
[4]On Searching for Solutions of the Diophantine Equation $x^3 + y^3 + z^3 = n$

2019年10月27日日曜日

仏説阿弥陀経

阿弥陀経の極楽の描写がおもしろかった。要約するとこんな感じ。

「極楽國土クラブには,金銀宝石がちりばめられた高級ボトルがずらっと並び,周囲の階段を登って上層階から見下ろすと,お酒を満たしたプールの中で蓮の形をした赤・黄・青・白の発光ダイオードのミラーボール照明が怪しく輝き,室内にはカラフルな紙吹雪が天井から舞い落ちているようだ。このクラブは昼から夜まで24時間,高級服で着飾ったお客さん達でいっぱいだが,ここに来られなかった人達のことをザマアと思っている自分自身に嫌悪している偽善者だ。食事は自宅で済ましてきているので,ここでは呑んで騒いで功徳を積むだけだ。クラブには奇抜なデザインの鳥の扮装をしたコンパニオンが大勢いて,皆で共にカラオケのオーケストラを楽しんでいる。この選曲がサイコーであり,とても心に響く。」

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
又舍利弗,極樂國土,七重欄楯 七重羅網 七重行樹。皆是四寶,周帀圍繞。是故彼國,名曰極樂。

(欄楯らんじゅん=玉垣,羅網らもう=四寶でできた網,行樹ごうじゅ=寶果をつけた樹の並木)
四寶とは,金・銀・瑠璃・玻璃)

又舍利弗,極樂國土,有七寶池。八功德水 充滿其中。池底純以 金沙布地。四邊階道,金銀琉璃 玻瓈合成。上有樓閣,亦以金銀琉璃 玻瓈硨磲 赤珠碼碯,而嚴飾之。池中蓮華,大如車輪。青色青光,黄色黄光,赤色赤光,白色白光。微妙香潔。舍利弗,極樂國土,成就如是 功德莊嚴。

七寶とは,金・銀・瑠璃・玻璃・硨磲・珊瑚・瑪瑙)
八功徳水とは,甘・冷・軟・軽・清浄・不臭・飲時不損喉・飲已不傷腹)

又舍利弗,彼佛國土,常作天樂。黄金爲地。晝夜六時,而雨曼陀羅華。其國衆生,常以清旦,各以衣裓,盛衆妙華,供養他方 十万億佛。即以食時,還到本國,飯食經行。舍利弗,極樂國土,成就如是 功德莊嚴。

復次舍利弗,彼國常有 種種奇妙 雜色之鳥。白鵠孔雀 鸚鵡舍利 迦陵頻伽 共命之鳥。是諸衆鳥,晝夜六時 出和雅音。其音演暢 五根五力 七菩提分 八聖道分 如是等法。其土衆生,聞是音已,皆悉念佛念法念僧。舍利弗,汝勿謂此鳥 實是罪報所生。所以者何。彼佛國土,無三惡趣。舍利弗,其佛國土,尚無三惡道之名。何況有實 是諸衆鳥。皆是阿彌陀佛,欲令法音宣流,變化所作。舍利弗,彼佛國土,微風吹動 諸寶行樹 及寶羅網,出微妙音。譬如百千種樂 同時倶作。聞是音者,皆自然生 念佛念法念僧之心。舍利弗,其佛國土,成就如是 功德莊嚴。

(極楽浄土の六鳥とは,白鵠・孔雀・鸚鵡・舎利・迦陵頻伽・共命)
五根とは,解脱を得るための五つの能力,信,動,念,定,慧)
五力とは,個人の中で主導的な力となった上記の五つの能力)
(七菩提分=七覚支とは,悟りを得る為に役立つ七種の行法,念覚支・択法覚支・精進覚支・喜覚支・軽安覚支・定覚支・捨覚支)
(八聖道分=八正道とは,戒(正語・正業・正命),定(正精進・正念・正定),慧(正見・正思惟)
三惡趣=さんまくしゅ,とは,悪業を重ねた人間が死後に趣く3つの下層世界,餓鬼趣,畜生趣,地獄趣)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
聖教電子化研究会仏説阿弥陀経から引用して注釈)




2019年10月26日土曜日

大学入学共通テスト

大学入学共通テストでの英語民間試験の利用や国語・数学への記述問題の導入はともに大きな問題をはらんでいる。ここにきて様々な反対運動が立ち上がっているが,安倍側近の萩生田光一文部科学大臣は,反対意見を無視して突っ走る構えである。極右の刀を右手に振りかざし,グローバル資本主義のハンマーを左手に掲げ,日本社会を破壊しながら階層の分断化を推進する政策が進んでいく。

筑波大学附属駒場高等学校の2年生がAERAのインタビューに答えた記事「筑駒生、大学入学共通テスト中止を訴える 「ぼくたちに入試を受けさせてください」」はtwitter上で共感を集めている。みわよしこの「貧困高校生を顧みない、大学入試新テストと英語民間試験の「非情」」は共通テストの問題点に迫っている。

国会での英語民間試験活用導入延期法案の動きについては賛否があるが,どうなるだろうか。[6]を見ると,これはもうどうしようもなくて,もっと先に進んでしまうのか。

[1]大学入試英語ポータルサイト(文部科学省)
[2]英語4技能検定の延期及び制度の見直しを求める要望書(全国高等学校校長会)
[3]2019.07.03 TOEIC撤退
[4]2019.07.06 大学入学共通テストの採点
[5]2019.07.07 記述式問題の問題
[6]大学入試改革を民間に丸投げする文科省の狙い(東洋経済オンライン)



2019年10月25日金曜日

量子超越性

先日の日本経済新聞の1面トップ記事でも取り上げられたのが,googleによる初の量子超越性の実験的証明にかかわるNature論文。論文の査読には Scott Aaronson や 藤井啓介さんも関わっている。今日(10/25)の日経朝刊も前のめりになっていた。量子計算の専門家のコメントもなく,いきなり応用と暗号化リスクの話に持ち込んでいる。NHKも同様。これが典型的な日本のメディアの反応だ。まあ,マスメディアというのは本質的にそういうものなのかもしれない。

【タイトル】
プログラム可能な超伝導素子を用いた量子超越性
Quantum spremacy using a programmable superconducting processor
【出典】
23 October 2019 Nature 574, 505-519 (2019)
【著者】
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis
【概要−拙訳】
 量子コンピュータへの期待は,ある種の計算が従来のコンピュータより指数関数的に速く実行できるかもしれないというところにある。根本的な挑戦は指数関数的に大きな計算空間で量子アルゴリズムを走らせることができる高信頼プロセッサをつくることである。
 この論文で我々は2^53ビット(10^16ビット)の計算空間に対応する53量子ビットの量子状態を作れるプログラム可能な超伝導キュービット素子について報告する。
 反復された実験の測定は確率分布を与え,それは古典的なシミュレーションでも確認された。我々のシカモアプロセッサは1つの量子回路を100万回動かして1つのインスタンスをとり出すのに200秒かかった。これは,従来型のスーパーコンピュータが1万年かけて計算する仕事に匹敵するものである。
 すべての既知のアルゴリズムに対するこの量子コンピュータの劇的な高速化は,特定の計算において量子超越性を実験的に実証したものであり,予想されていた計算パラダイムの転換の先駆けとなるものである。

[1]グーグルが主張する「量子超越性の実証」にIBMが公然と反論した理由(Wired.jp)
[2]Googleが量子超越を達成−新たな時代の幕開けへ(Qmedia)
[3]量子コンピューティングの次のステップ:コンピュータサイエンスの役割(Qmedia)
[4]Quantum supremacy: the gloves are off(The Blog of Scott Aaronson)


2019年10月24日木曜日

まちライブラリー

先日訪れた東大阪市文化創造館に,「まちライブラリー」という民営のライブラリーが入館していた。まちライブラリーをはじめた,礒田純充(いそだよしみつ)さんの略歴などがここにある。だれでもがどこにでもライブラリーをつくって集うというものらしい。

第1号は礒田さんが天満ではじめたISまちライブラリー(ここはメンバーシップ制だ)。まちライブラリー@東大阪は, No.715 だった。全く好きではないTSUTAYA風にデザインされた本棚に,テーマ別に選書された本が並んでいた。本には寄贈した人のメッセージカードがあって,借りた人がそれを繋ぐことができるようになっていた。

2019年10月23日水曜日

豆玩舎ZUNZO

奈良から近鉄奈良線の八戸ノ里へ行くには,生駒から先は準急で進み,東花園で普通電車に乗り換える必要がある。諸般の事情でこれに失敗すると河内小阪で降りて歩いて戻る羽目に陥る。なお,近畿大学本部の最寄り駅は,近鉄大阪線の弥刀であることに注意する。

東大阪市は,人口50万人の中核市だ。花園ラグビー場と技術を持った中小企業が集積する町として知られているはずだ。なんと,江崎玲於奈と山中伸弥も輩出しているようだ。

司馬遼太郎や田辺聖子の記念館・文学館や,大阪商業大学アミューズメント産業研究所という,囲碁・将棋・麻雀などのゲームや娯楽についての研究や常設展示をしている施設もあり,見どころは多いと宣伝されていた。

荒本にある東大阪市の教育委員会を訪ねたことがあるが,そこは高層ビルで堺市役所の次に立派な市庁舎の中にあった。東大阪市は儲かっているのだろうか。最近,東大阪市文化創造館という複合施設も完成し,非常に立派なホールができていた。

さて,八戸ノ里駅前には,グリコのおまけを開発で知られている宮本順三が設立した宮本順三記念館(別名豆玩舎ZUNZO)が小さなビルの4Fにあった。宮本順三は,1935年に江崎グリコに入社しており,グリコのおまけのアイディアを求めて世界を回って収集したおもちゃがたくさんあった。

自分がグリコのおもちゃで遊んだ時代は,プラスチック製のものが主流となる少し前だったように思う。木でできた電化製品や乗り物や道具などがあったはずなのだか,展示されているグリコのおまけの中であまり記憶にぴったりはまるものはなかった。江崎記念館に行く必要があるのかな。



写真:豆玩舎ZUNZO(2019.10.22撮影)

2019年10月22日火曜日

1次元井戸型ポテンシャル(2)

1次元井戸型ポテンシャル(1)からの続き)

テレビは朝から即位の礼のニュースで埋めつくされているのでなかなか気持ちが悪い。ラグビーワールドカップが終わった(実はまだ終わっていないの)と思ったらこれだ。オリンピックかIRカジノまでこの調子なのだろうか。

Mathematicaによる1次元井戸型ポテンシャルの解法をjuliaに移植してみた。Mathematicaプログラミングは土地勘があるので,簡単なガイドがあれば大丈夫だ。juliaプログラミングはそこまで熟達していないので,地図とガイドとネットでの評判を駆使して歩き回ることになる。ポイントは2つ。非線形方程式を解くFindRootや代数方程式を解くNSolveをどうするか。グラフをどうするか。それさえクリアすればよいのだが,なかなか難しかった。

非線形方程式を解くパッケージ NLsolve,1次元の数値積分を実行するパッケージQuadGKを導入した。図形描画のためのPlotとGRは既に導入済みである。こういうときに助けになるのが阪大のサイバーメディアセンターの降旗大介さんのページ(Applied Mathematics 9)。NLSolveは生で使うと非常にわかりにくい仕様になっているので,降旗さんがシンタックスシュガーを作ってくれている。おかげで比較的簡単に使うことができるが,MathematicaのFindRootの方がわかりやすいと思うのは気のせいか。規格化条件から波動関数の振幅を求める連立方程式も,MathematicaのNSolveに対応するものが見当たらなかったので,NLsolveを使うことにした。

問題はグラフだ。MathematicaのPlotルーチンにはなじんでいるので,およその様子はわかるが,juliaの方はさっぱりで難渋した。データを離散的なリストの形にするところまでは問題なかったが,そうすると横軸がデータ数でプロットされる。これをもとの変数に変換するためには,Plotの引数にxのリストを与える必要があることに気付くまで半日要した。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
using NLsolve
using QuadGK
gr()

function nls(func, params...; ini = [0.0])
#
#スカラー変数 x スカラー関数 f(x,params)=0
# nls( f, params, ini = xの初期値 )
#ベクトル変数 x ベクトル関数 f(x,params)=0
# nls( f, params, ini = xの初期ベクトル )
#
    if typeof(ini) <: Number
        r = nlsolve((vout,vin)->vout[1]=func(vin[1],params...), [ini])
        v = r.zero[1]
    else
        r = nlsolve((vout,vin)->vout .= func(vin,params...), ini)
        v = r.zero
    end
#    return v, r.f_converged
    return v
end

function heaviside(t)
  0.5 * (sign(t) + 1)
end

function r2(v0,a)
  r=10^6*v0*a^2/(2000)^2
  return r
end

function h1(x, p)
  a,b = x # x[1] とか x[2] と書くのは面倒なので,a,b で代用
  c,d = p # p[1] とか p[2] と書くのは面倒なので,c,d で代用
  return [b+a/tan(a)+c, a^2+b^2-d]
end

function h2(y, q)
  a,b = y # y[1] とか y[2] と書くのは面倒なので,a,b で代用
  c,d = q # q[1] とか q[2] と書くのは面倒なので,c,d で代用      
  (f,hf) =quadgk(x -> sin(c*x)^2, 0, 1)
  (g,hg) =quadgk(x -> exp(-2*d*x),1,10)
  return [a*sin(c)-b*exp(-d), a^2*f+b^2*g-1]
end

function wf(x,s,t)
  (pa,qa)=s
  (a,b)=t
  return [heaviside(1-t)*a*sin(pa*t)+heaviside(t-1)*b*exp(-qa*t) for t in x]
end

r = [0, r2(50, 2)]
ini_v = [2.0, 1.0]
s = nls(h1, r, ini = ini_v)
ini_u = [1.0, 1.0]
t = nls(h2, s, ini = ini_u)
x = 0:0.01:3
plot(x,wf(x,s,t))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
図 1次元井戸型ポテンシャルの波動関数


2019年10月21日月曜日

1次元井戸型ポテンシャル(1)

明後日の量子物理学の授業は,1次元井戸型ポテンシャル(復習)の続きなので,数値計算で結果を確認するためのコードをMathematicaで書いてみた。

1次元ポテンシャル $V(x)$に質量$m$の電子が束縛されているとする。$x \le 0$ で$V(x)=\infty$ ,$0 \lt x \lt a $で,$V(x)=0$,$a \le x$で$V(x)=V_0$として [eV]単位で与える。ポテンシャルのレンジ $a$は [Å]単位とする。$2mc^2=10^6$[eV],$\hbar c = 2000$ [eV・Å] と近似した。$r2= \frac{2mc^2 V_0 a^2}{(\hbar c)^2} =(\pi/2)^2$以上で束縛状態が存在する。

In[1]:= r2[V0_, a_] := 10^6*V0*a^2/(2000)^2
In[2]:= Clear[pa, qa]
In[3]:= sol1 = FindRoot[{p^2 + q^2 == r2[50, 2], q == -p/Tan[p]}, {p, 5}, {q, 3}]
Out[3]= {p -> 5.41164, q -> 4.55128}
In[4]:= {pa, qa} = {p, q} /. sol1
Out[4]= {5.41164, 4.55128}
In[5]:= Clear[A, B]
In[6]:= sol2 =NSolve[{A Sin[pa] == B Exp[-qa], A^2 Integrate[Sin[pa x]^2 , {x, 0, 1}] +
                                     B^2 Integrate[Exp[-2 qa x], {x, 1, Infinity}] == 1}, {A, B}]
Out[6]= {{A -> -1.28052, B -> 92.8589}, {A -> 1.28052, B -> -92.8589}}
In[7]:= {A, B} = {A, B} /. sol2[[1]]
Out[7]= {-1.28052, 92.8589}
In[8]:= Plot[A Sin[pa x] HeavisideTheta[-x + 1] +  B Exp[-qa x] HeavisideTheta[x - 1],
{x, 0, 3}, PlotRange -> {-2, 2}]

図 1次元井戸型ポテンシャルの波動関数








2019年10月20日日曜日

体育の授業

大学の教養課程での体育の授業は,とりあえずちゃんと出席すれば単位を取ることができた。種目は選択だったのかもしれないが,憶えているのは半期ラグビーのコースを選択したことだけだ。受講していたのは30人くらいいただろうか。高校時代にラグビーをやったものなどほとんどいないので,一から手取り足取り,スクラムやラインアウトやパスやキックを順番に体験して,ほとんど試合らしくない練習試合までいったかどうか。試験は目標を設定してそこにキックしたボールが入るかどうかだった。それなりにうまく蹴ることができたような気もしたが,結局成績はいつものように並であった。