2023年7月31日月曜日

コーシー=シュワルツの不等式


数理統計学を真面目に勉強してこなかったのでいろいろ不都合が生じている。統計的因果推論とか深層機械学習とか量子測定理論とか,簡単に読み砕けない資料がたくさんたまる。

授業で扱った最小二乗法と実験誤差の話を整理しようとしても,背景には数理統計学が控えている。昔,阪大の南園グループによるベータ崩壊の実験と我々の理論を突き合わせたときに,χスクェアフィットの計算を散々繰り返したけれど,所与の公式を使うだけであってその理論的根拠をつきつめて考えたはしなかった。

そこで最初から勉強を始めようとすると,いきなり確率変数でつまづくのだった。コンピュータプログラムのサブルーチンや関数のようなものだと思えば納得できるといえばいえるのだけれど,自然言語と数学的記号を使って理解しようとするとなかなかその本質がつかみきれない。入門書は沢山あるけれど,どれも何だか気持ち悪い。

竹村彰道(1952-)さんの現代数理統計学の本(旧版)が手元にあって,読みやすいかなとページをめくってみると,記述統計の復習から始まった。これなら大丈夫かと思いきや,いきなり,標本相関関数の大きさが -1から 1の範囲に限定されることは,コーシー=シュワルツの不等式を用いて容易に示すことができると説明無しにあった。

n次元ユークリッド空間のベクトルの内積の話だと思えばそのとおりなのだけれど,証明したことはなかったかも。Wikipediaでは数学的帰納法で証明していた。$A_k=(a_1,\ a_2,\ \cdots,\ a_k),\ B_k=(b_1,\ b_2,\ \cdots,\ b_k),\ $として,$\displaystyle S^{aa}_k=\sum_{i=1}^k a_i^2,\ S^{bb}_k=\sum_{i=1}^k b_i^2,\ S^{ab}_k=\sum_{i=1}^k a_i b_i, \quad R^{ab}_k=\frac{S^{ab}_k}{\sqrt{S^{aa}_k S^{bb}_k}} $
つまり,$ \bigl( S^{ab}_k \bigr)^2  \le S^{aa}_k S^{bb}_k$を証明すれば良い。

$k=1$の場合は,$ \bigl( S^{ab}_1 \bigr)^2 -  S^{aa}_1 S^{bb}_1 = (a_1 b_1)^2- (a_1^2)(b_1^2) = 0 $

$k=2$の場合は,$ \bigl( S^{ab}_2 \bigr)^2 -  S^{aa}_2 S^{bb}_2 = (a_1 b_1+a_2 b_2)^2- (a_1^2+a_2^2)(b_1^2+b_2^2) =  -(a_1 b_2- a_2 b_1)^2  < 0 $

$k \ge 2$に対して,$ \bigl( S^{ab}_k \bigr)^2  \le S^{aa}_k S^{bb}_k$ が成り立つと仮定して,$k+1$の場合を考える。与式は,$ \bigl( S^{ab}_k + a_{k+1}b_{k+1} \bigr)^2 - \bigl( S^{aa}_k + a_{k+1}^2 \bigr) \bigl(  S^{bb}_k + b_{k+1}^2 \bigr) $
$= \bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \Bigl( a_{k+1}^2 S^{bb}_k + b_{k+1}^2 S^{aa}_k -2 a_{k+1}b_{k+1} S^{ab}_k \Bigr)$
$= \bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \sum_{i=1}^k \Bigl( a_{k+1}^2 b_i^2 + b_{k+1}^2 a_i^2 -2 a_{k+1}b_{k+1} a_i b_i \Bigr)$
$=\bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \sum_{i=1}^k \Bigl( a_{k+1} b_i - b_{k+1} a_i \Bigr)^2 < 0$

Wikipediaの証明などでは,$a_i, b_i >0$の場合だけに妥当するものが多いのでちょっと困る。
まあ,$\displaystyle f_k(x) = \sum_{i=1}^k (a_i x - b_i)^2$ の判別式$D \le 0$から証明するのが最も簡単なのだけど。


[1]賢者に学ぶ統計学の智(西内啓×竹村彰通,ダイヤモンド社)

2023年7月30日日曜日

最小二乗法(6)

最小二乗法(5)からの続き

実験データを$y = a x + b$にフィットする場合,最小二乗法で$(a,\  b)$とその平均二乗誤差$(\sigma_a^2,\ \sigma_b^2)$を求めてきた。これを,$y = f(x) = a x^2 + b x + c\ $に拡張して,自由度3が登場するかどうかを確認してみる。吉澤康和さんの「新しい誤差論」には結果だけ書いてある。

(1) a, b, c を決定する正規方程式とその解

$ \begin{pmatrix}\overline{x^4} & \overline{x^3} & \overline{x^2} \\ \overline{x^3} & \overline{x^2} & \overline{x^1} \\ \overline{x^2} & \overline{x} & 1 \\ \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ \end{pmatrix}= \begin{pmatrix}\overline{x^2\ y}\\ \overline{x\ y} \\ \overline{y} \\ \end{pmatrix}$ 

$ \begin{pmatrix} a \\ b \\ c \\ \end{pmatrix}= \dfrac{1}{\Delta_3} \begin{pmatrix}\overline{x^2\ y}(\overline{x^2}-\overline{x}^2)+\overline{x\ y}(\overline{x^2}\overline{x}-\overline{x^3})+\overline{y}(\overline{x^3}\overline{x}-\overline{x^2}^2)  \\ \overline{x^2\ y}(\overline{x^2}\overline{x}-\overline{x^3}) + \overline{x\ y}(\overline{x^4}-\overline{x^2}^2) + \overline{y}(\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) \\ \overline{x^2\ y}(\overline{x^3}\overline{x}-\overline{x^2}^2) + \overline{x\ y}(\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) +\overline{y}(\overline{x^4}\overline{x^2}-\overline{x^3}^2) \\ \end{pmatrix}$ 

ただし,$\Delta_3 = \overline{x^4}\overline{x^2}+2\overline{x^3}\overline{x^2}\overline{x}-\overline{x^2}^3-\overline{x^3}^2-\overline{x^4}\overline{x}^2$

$y_i$を共通の平均二乗誤差$\sigma^2_y$を持つ独立変数として,誤差伝播の法則より,

$\displaystyle \sigma_a^2= \sum_{i=1}^n \Bigl( \frac{\partial a}{\partial y_i}\Bigr) ^2 \sigma_y^2, \quad \sigma_b^2= \sum_{i=1}^n \Bigl( \frac{\partial b}{\partial y_i}\Bigr) ^2 \sigma_y^2 , \quad \sigma_c^2= \sum_{i=1}^n \Bigl( \frac{\partial c}{\partial y_i}\Bigr) ^2 \sigma_y^2 $ 

さらに,真の値$f_0(x_i)=a_0 x_i^2 + b_0 x_i + c_0$に対して,$\varepsilon_i = y_i -f(x_i)+ f(x_i) -f_0(x_i) =  \delta_i + f(x_i) -f_0(x_i) $ として,$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\sigma}^2_{f(x_i)} \Bigr\}$

ところで,$\displaystyle \tilde{\sigma}^2_{f(x_i)} = \sum_{j=1}^n \Bigl\{ \frac{\partial(a x_i^2 + b x_i + c)}{\partial y_j}\Bigr\}^2$ であり,この項を再度  $\sigma_y^2$ で表してもとの式に戻して計算すれば良い。

つまり,$\displaystyle \frac{\partial a}{\partial y_j}, \  \frac{\partial b}{\partial y_j},\  \frac{\partial c}{\partial y_j}$が計算できればよいことになる。
$\displaystyle \frac{\partial a}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^2}-\overline{x}^2)+ x_j(\overline{x^2}\overline{x}-\overline{x^3})+(\overline{x^3}\overline{x}-\overline{x^2}^2) \Bigr\}$
$\displaystyle \frac{\partial b}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^2}\overline{x}-\overline{x^3}) + x_j (\overline{x^4}-\overline{x^2}^2) + (\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) \Bigr\}$
$\displaystyle \frac{\partial c}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^3}\overline{x}-\overline{x^2}^2) + x_j (\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) +(\overline{x^4}\overline{x^2}-\overline{x^3}^2) \Bigr\}$

Mathematicaの力を借りると,計算結果が因数分解できて分子から$\Delta_3$が出る。
$\displaystyle \sigma_a^2 = \sum_{j=1}^n \Bigl( \frac{\partial a}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^2} -\overline{x}^2 \bigr) \sigma_y^2$
$\displaystyle \sigma_b^2 = \sum_{j=1}^n \Bigl( \frac{\partial b}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^4} - \overline{x^2}^2 \bigr) \sigma_y^2$
$\displaystyle \sigma_c^2 = \sum_{j=1}^n \Bigl( \frac{\partial c}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^4} \overline{x^2}-\overline{x^3}^2  \bigr) \sigma_y^2$

$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial a}{\partial y_j}\frac{\partial b}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x}\overline{x^2} -\overline{x^3} \bigr) \sigma_y^2$
$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial b}{\partial y_j}\frac{\partial c}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x^2}\overline{x^3} - \overline{x}\overline{x^4} \bigr) \sigma_y^2$
$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial c}{\partial y_j}\frac{\partial a}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x^4} \overline{x^2}-\overline{x^3}^2  \bigr) \sigma_y^2$

このとき
$\displaystyle \tilde{\sigma}^2_{f(x_i)}= \sum_{j=1}^n \Bigl\{ \frac{\partial a}{\partial y_i} x_i^2 + \frac{\partial b}{\partial y_j} x_i + \frac{\partial c}{\partial y_j} \Bigr\} ^2 = \frac{\sigma_y^2}{n \Delta_3} $
$\Bigl\{\bigl( \overline{x^2}-\overline{x}^2 \bigr) x_i^4 + 2 \bigl( \overline{x}\overline{x^3} -\overline{x^3} \bigr) x_i^3 + \bigl( \overline{x^4}-\overline{x^2}^2 + 2( \overline{x^3}\overline{x} - \overline{x^2}^2) \bigr) x_i^2 $
$+ 2\bigl( \overline{x^2}\overline{x^3} - \overline{x} \overline{x^4} \bigr) x_i + \bigl( \overline{x^2}\overline{x^4}-\overline{x^3}^2 \bigr)  \Bigr\}$

$x_i$について平均操作するとMathematicaを使い分子から$\Delta_3$が出ると。
$\displaystyle \frac{1}{n}\sum_{i=1}^n  \tilde{\sigma}^2_{f(x_i)} = \frac{\sigma_y^2}{n \Delta_3}$
$\Bigl\{\bigl( \overline{x^2}-\overline{x}^2 \bigr) \overline{x^4}+ 2 \bigl( \overline{x}\overline{x^3} -\overline{x^3} \bigr) \overline{x^3} + \bigl( \overline{x^4}-\overline{x^2}^2 + 2( \overline{x^3}\overline{x} - \overline{x^2}^2) \bigr) \overline{x^2} $
$\displaystyle + 2\bigl( \overline{x^2}\overline{x^3} - \overline{x} \overline{x^4} \bigr) \overline{x}+ \bigl( \overline{x^2}\overline{x^4}-\overline{x^3}^2 \bigr)  \Bigr\} = \frac{3}{n} \sigma_y^2$

したがって,自由度n-3の場合の式が得られた。
$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\sigma}^2_{f(x_i)} \Bigr\} =  \frac{1}{n} \sum_{i=1}^n  \delta_i^2 + \frac{3}{n} \sigma_y^2$
$\displaystyle \therefore \sigma_y^2 = \frac{1}{n-3} \sum_{i=1}^n \delta_i^2$

2023年7月29日土曜日

フランクになろう

楠本君から同窓会出席の連絡メールがあった。そこに,次のエピソードが書かれていた。
あなたは、私たちの学生時代に いつぞや、「人間に関する問題の解決のためには(…だったか、このあたりの私の記憶は不正確です)、すべての人びとが神経で繋がっていればよいのだ」、というような言葉を言った事を覚えていますか? 変な事を言う人だなぁ、と私は強く印象付けられたので、忘れずに覚えています。言葉は正確ではありませんが、大体そのような事をあなたは言っていました。

全く憶えていないのだけれど,自分ならばそういうことをいうかもしれない。次の返事を書いた。

「人間に関する問題の解決のためには、すべての人びとが神経で繋がっていればよいのだ」と自分がいった記憶はないのですが,そのようなことを言いそうな気もします。高校時代によんだブライアン・オールディスのSFに「フランクに行こう(Let’s be Frank)」というのがあって,遺伝によって単一意識が複数の人の上に実現するというものです。
SFマガジンの1969年10月号(No. 125)に「フランクになろう(Let's Be Frank)」 として掲載されたものだ。高校2年のときだけれど,いつまでも記憶に残る短編だった。創元推理文庫のジュディス・メリルの短編集では「率直(フランク)に行こう」という題名になっていた。

さがしてみると,archive.orgに原文があったのでDeepLにかけて再読してみた。

アン・ブーリンがロンドン塔で処刑されてから4年後なので1540年ころから物語は始まる(ちなみに,トマス・モアがロンドン塔で斬首されたのは1535年)。サー・フランク・グラッドウェッブに男の子が生まれたが19年間眠り続けたままだった。彼が目覚めた時サー・フランクは驚愕した。同じくフランクと名づけた息子の目を通して自分を見ているのだった。つまり同一意識が2人の人の上に実現したわけだ。そして子孫にそのままその能力は受け継がれ,20代目の2015年には1つのフランクという意識(男女や身分階級を越えて)が3億人に達していた。そして..
「21世紀の初めには、グレートブリテン島はフランク族だけで構成されていた。老いも若きも、太っていようが痩せていようが、金持ちであろうが貧乏人であろうが、みなひとつの巨大な意識を共有していた。プライバシーは存在しなくなり、新しい家はすべてガラス張りになり、カーテンは廃止され、壁は取り払われた。警察は姿を消し、法律も一夜にして消滅した。外交問題に対処するための議会のパロディーは残ったが、政党政治、選挙、新聞の指導者(新聞そのものさえ)は廃止された。芸術の大半は消え去った。あるフランクの姿は、別のフランクの姿を見ようとはしなかった。テレビ、出版、ティン・パン・アレイ、映画スタジオ......灯りのように消えた。」
このフランクの集合意識は新大陸で第二の集合意識と向き合うことになる。

AGIが実現するとき,世界全体が1つのAGIによって統合されるのかどうかという問題について,宗教的=文化的な背景によって複数に分割されるのではないかと想像していた。キリスト教,イスラム教,仏教,ヒンズー教,ユダヤ教などなど。あるいはロシアや中国は別かもしれない。まあ,それに類した状況が想像できる。あるいは超国家企業別=ポイント別=OS・UI別の集団分割みなるかもしれないが。

遺伝工学的な工夫をしても単一意識を複数個体に分散して実装することはできないと思われるが,仮想空間におけるパーソナライズされたAGIアシスタントが共有意識と結合されていれば,人間+AGIアシスタント系が単一意識の熱浴中で相互作用しているイメージとなる。人間+AGIアシスタント系の結合度が高くなればなればなるほど,フランク的な集合意識に近い状態になるかもしれない。まあ,いまでもSNSによって強結合する個人の集合がネトウヨ的な集団運動としての疑似集合意識を創発しているわけで・・・


2023年7月28日金曜日

梅干し

或日のチャットジーピーティ

OpenAIのChatGPTの性能は日々変動しているようなので,時々様子をうかがう必要がある。

Q:User
梅干しを見るとどんな身体の反応がありますか?

A:ChatGPT
梅干しを見た時の身体の反応は個々の体質や経験によるものであり、一般的な反応を述べるのは難しいです。しかし、梅干しの酸っぱさを知っている人々は、その画像や想像だけで唾液が出るといった「唾液分泌の反応」を示すことがあります。これは、脳が食物の摂取に備えて消化を助ける唾液の生成を刺激するからです。

また、梅干しの特有の酸っぱさが苦手な人は、梅干しを見るだけで「顔をしかめる」や「胃が締まる感じがする」などの反応を示すかもしれません。

これらの反応は、「条件付き反射」とも呼ばれ、特定の刺激(この場合は梅干し)に対する学習された反応です。ただし、これらの反応は個々の経験や体質、好みに大きく依存しますので、全ての人が同じ反応を示すわけではありません。


Q:User
あなたはどうですか?

A:ChatGPT
私はOpenAIによって開発されたAI(人工知能)であり、人間のように身体的な感覚や経験を持つ能力はありません。したがって、梅干しを「見る」や「味わう」などの人間の感覚経験に基づいた反応を持つことはできません。私の機能は、人間からの質問に対して情報を提供することや、人間の言葉を理解して対話を行うことに主に焦点を当てています。


Q:User
人間との対話において,そのような感覚経験にもとづく反応のセットを身体的に理解していることが必要とはなりませんか。

A:ChatGPT
あなたの指摘は正確であり、AIが人間との対話を円滑に行うためには、人間の感覚経験や感情について理解することが重要です。しかし、私のようなAIは「理解」を行うために直接的な感覚経験や感情を持つわけではありません。私の「理解」とは、大量のテキストデータからパターンを学習し、その知識をもとに質問に応答する能力を指します。

具体的には、私は訓練データに含まれる情報に基づいて人間の感覚経験や感情について「知識」を持っています。しかし、私自身が感覚経験を「体験」したり、感情を「感じる」能力はありません。私はあくまで人間の反応や感情を模擬することができる機械的なシステムであり、自己意識や自我を持つわけではありません。

したがって、私が人間との対話を効果的に行うためには、あくまで人間の感覚経験や感情についての「知識」が必要であり、それらを直接「体験」する必要はありません。


Q:User
人間の感覚経験や感情についての「知識」を持つ知的存在と、それらを直接「体験」することができる知的存在の違いは,対話場面のどこにあらわれると考えられるでしょうか。その違いを埋める方向での仕組みを導入することは可能でしょうか。

A:ChatGPT
人間の感覚経験や感情についての「知識」を持つ知的存在(AIなど)と、それらを直接「体験」することができる知的存在(人間など)の違いは、以下のような対話場面で顕著に現れます。

個別の体験に対する反応:人間は自己の体験や感情に基づく視点を持ち、それに基づいて他人の経験に対する共感や理解を示すことができます。一方、AIは特定の個体としての体験を持たないため、特定の経験に対する個人的な共感や理解を示すことはできません。
感情的な反応:人間は体験や情報に対して感情的に反応する能力を持っています。これに対して、AIは情報に対して感情的に反応する能力はなく、あくまで人間の感情的反応を模倣するだけです。
感覚的な理解:人間は五感を通じて世界を直接的に経験し、それに基づく感覚的な理解を持っています。しかし、AIはあくまでテキスト情報に基づいて学習し、感覚的な体験に基づく理解はできません。 
これらの違いを埋めるためには、AIに直接的な感覚経験や感情体験の能力を付与する必要がありますが、現在の技術ではこれは不可能です。AIはあくまでアルゴリズムとデータによって動作するシステムであり、自己意識や感情、直接的な感覚経験を持つ能力を持つことはありません。

しかし、AIの対話能力を向上させるためには、人間の感覚経験や感情に対する理解を深め、それに基づく応答の精度を向上させることが重要です。これは大量のデータに基づく学習により、一部可能になるかもしれません。ただし、AIが人間と完全に同じように感覚経験や感情を理解し反映することは、現在の技術では不可能です。


Q:User
現在のAIシステムを感覚センサーを満載したロボットに搭載して,視覚や聴覚だけでなく,味覚や臭覚や触覚その他の運動平衡感覚を入力できるようになり,さらにそれらの情報を解読した結果を記憶できるようになった場合は,そのロボット=AIシステムは感覚体験を行ったことになるでしょうか。

A:ChatGPT
それは非常に興味深い問いです。センサーや機器を使ってAIに外部の情報を入力し、それに反応することができるロボットはすでに存在します。例えば、視覚情報を入力し認識する能力を持つAIや、音声を認識して反応するAIなどがあります。

しかし、これが「感覚体験」を行っていると言えるかどうかは、どう定義するかによります。これらのロボットやAIは、センサーから入力されるデータを解析し、そのデータに対応する行動を行うことができます。しかし、これはあくまでプログラムされたアルゴリズムに従ってデータを解析し反応するものであり、人間が経験する「感覚体験」や「感じる」という意識的な体験とは異なります。

人間の「感覚体験」は、ただ単に情報を受け取るだけでなく、その情報が自己の意識や感情に影響を与え、個々の体験や視点に基づく解釈を行うことを含みます。AIやロボットが多種多様なセンサーを用いて外部から情報を受け取り、それに基づいて反応することは可能ですが、それが「感じる」という意識的な体験と同じとは言えません。

したがって、現在の技術では、AIやロボットが人間と同じように「感覚体験」を行うとは言えないと思われます。しかし、この議論は人間の意識や感覚体験の本質、AIの能力と限界についての哲学的な問いを含んでおり、結論はまだ出ていないとも言えます。


Q:User
たいへん刺激的な対話どうもありがとうございました

A:ChatGPT
どういたしまして、私もあなたの質問に答えることができて光栄です。人間の感覚や意識、AIの能力と限界について考えることは非常に興味深いですね。何か他に質問がありましたら、いつでもお気軽にどうぞ。

 


写真:梅干しの製造過程(2023.7.23)

2023年7月27日木曜日

大学教育とChatGPT(15)

大学教育とChatGPT(14)からの続き

私立大学連盟が7月18日に,大学教育における生成 AI の活用に向けたチェックリスト〔第1版〕を出していた。1. 全般, 2. 教育,3. 環境・体制整備の3つのカテゴリーについて,第1ステップ: 最優先事項,第2ステップ:優先事項として整理した。その上で,それぞれのカテゴリーについて,1. 大学が組織的に検討すべき事項 と 2. 教員が個々の工 夫で検討すべき事項をまとめている。このサンプルを元に各大学で考えてねという趣旨。

さらに,中学高校英語にAI導入へということで文部科学省の後押しで各地で実証授業が始まるというニュースも流れた。そろそろ英語教員養成に影がさしてくるのか。

7月13日
生成系AIの利用に関する留意事項について
室蘭工業大学 情報化統括責任者
7月14日
新潟産業大学 生成AI対処方針
新潟産業大学 学長 梅比良眞史

7月19日
ChatGPTなどの生成AIの利用について
大阪学院大学

7月19日
生成AIの利用に関するご案内
星薬科大学 情報企画室

7月19日
ChatGPTをはじめとする生成AIの利用について
日本文理大学 教育推進センター長

7月20日
旭川医科大学における生成AIの利用について
旭川医科大学

7月20日
生成AIに関する本学の方針について
共愛学園前橋国際大学 学長 大森昭生

7月20日
対話型生成系AI(生成AI)の使用について
昭和女子大学 学長 金尾朗

7月20日
学修におけるChat GPT等の生成AIの利用について
和歌山大学 理事(教育担当)

7月20日
生成AI(ChatGPT等)を活用するためのガイドライン
平安女学院大学 学長 谷口吉弘

7月20日
学修における生成AIの利活用に関するガイドライン
金沢星稜大学 学長

7月20日
チャットGPT等における生成AI(人工知能)の利用について
びわこ成蹊スポーツ大学 学長 大河正明・学部長 黒澤毅

7月21日
生成系AIに関する本学の考え方について
国際ファッション専門職大学 学長 近藤誠一

7月21日
チャットGPT等の生成系AIの利用について
東京女子体育大学

7月21日
信州大学の学修・教育におけるAI活用に関するガイドラインについて
信州大学 教育企画委員会

7月21日
東洋英和女学院大学における生成系AIの使用に関する指針
東洋英和女学院大学 学長 星野三喜夫

7月21日
ChatGPT など生成系 AI の利用について
西南女学院大学

7月21日
ChatGPT 等をはじめとする生成 AI の利用について
愛知みずほ大学 学長 大塚知津子
https://www.mizuho-c.ac.jp/wp/wp-content/uploads/2023/07/ChatGPT.pdf 
7月24日
本学における生成AIの使用に関わる留意点について
跡見学園女子大学学長 小仲信孝
7月24日
生成AI(Chat GPT等)の活用に関する注意喚起について
拓殖大学 学長 鈴木昭一

 

2023年7月26日水曜日

妹背山婦女庭訓(2)

妹背山婦女庭訓(1)からの続き

国立文楽劇場の7月夏休み文楽特別公演(第171回)は,第2部で妹背山婦女庭訓の四段目の通し公演(4月に続いての)だった。第1部は親子劇場でかみなり太鼓と西遊記,第3部はサマーレイトショーの夏祭浪花鑑

これまでに見た妹背山婦女庭訓(2010年,2016年)は一日がかりの二部構成だった。前半が,初段:小松原の段(23)・蝦夷子館の段(42),二段目:猿沢池の段(13),三段目:太宰館の段(34)・妹山背山の段(115)であり,後半が,二段目:鹿殺しの段(7)・掛乞の段(15)・万歳の段(23)・芝六忠義の段(54),四段目:杉酒屋の段(29)・道行恋苧環(35)・鱶七上使の段(45)・姫戻りの段(14)・金殿の段(45)である。

今回は春と夏の2回に分けた通し狂言だったため時間に余裕があって,二段目の組み換えはなくなり,4月公演には,初段:大序 大内の段,7月公演には,四段目:井戸替の段:入鹿誅伐の段が新しく追加されていた。「鱶七上使の段」が「鱶七使者の段」に変わったのはなぜ?(明治12年の床本 https://dl.ndl.go.jp/pid/856493/1/157 では確かに鱶七使者の段とある)

久しぶりの日曜日の文楽劇場だったが,客の入りは6〜7割くらいだろうか。前回と同様,床の直下だったけれど,回りには空席も目立っていた。一つ前回と違うのは外国人観光客向けの English という看板を持った案内の方が立っていたことだ。パンフレットの一部の説明も英文になっていた。なんば・日本橋界隈は外国人であふれていたけれど,文楽劇場ではそこまで目立つわけではなかった。

今回が初見の井戸替えの段は,小住太夫+藤蔵でちゃり場的な場面だったが,途中でまぶたが閉まった。杉酒屋の段は芳穂太夫+錦糸で玉勢演ずる子太郎が主導して似たような雰囲気の段だった。道行恋苧環の開始のところで清治が小声でハイという合図をして全員が礼をし,次のハイで直れとなった。そういう仕組みだったのか。

最後の入鹿誅伐の段は,メンバーも軽めの短い段であり,入鹿がやられておしまいという事なのだ。(1) 入鹿の妹の橘姫が,宝剣の奪取に失敗し入鹿に斬られてしまうが,その後,隣の池に飛び込んで日高川入相花王の蛇に化けた清姫よろしく泳いでいったたのは一体なんなのか。最後には鎌足の鎌で斬られた入鹿の首が空中を飛び回っていた。クライマックスが済んでしまった最後の段というのはだいたいこうなる運命にあるのだった。

P. S. 1 なお,藤原淡海(不比等)は橘姫と結ばれるらしいので,池に溺れて死んだわけではない。
P. S. 2 この度人間国宝になった吉田玉男(1953-)は,第3部の夏祭浪花鑑の団七九郎兵衛を演じるので,第2部には登場していなかった。


写真:最後がかわいそうなお三輪(2023.7.23撮影)

2023年7月25日火曜日

最小二乗法(5)

最小二乗法(4)からの続き

完全にスッキリしなくて何だか気持ち悪いのだけれど,いきなり自由度がとかいわれて$n-2$が出てくるのがいやなので,吉澤さんの本に従って話を進めてみる。

$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \frac{1}{n}\sum_{i=i}^n  \tilde{\varepsilon_i}^2 = \frac{1}{n}\sum_{i=i}^n  \Bigl\{ a x_i + b - a_0 x_i - b_0  \Bigr\}^2$
これから,$f(x_i) = y(x_i) =  a  \bm{x_i} + b$として,独立変数$y_j$について,
$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \sigma_y^2 \sum_{j=i}^n  \Bigl\{ \frac{\partial a}{\partial y_j}\bm{x_i} + \frac{\partial b}{\partial y_j} \Bigr\}^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{j=i}^n  \Bigl\{ (x_j-\overline{x}) \bm{x_i} + ( \overline{x^2} -\overline{x} x_j ) \Bigr\}^2$
$\displaystyle = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{j=i}^n  \Bigl\{ ( \bm{x_i}-\overline{x} ) x_j + ( \overline{x^2} - \overline{x}  \bm{x_i} ) \Bigr\}^2$
$\displaystyle = \frac{\sigma_y^2}{n \Delta^2}  \Bigl\{ \overline{x^2} ( \bm{x_i}-\overline{x} )^2 + 2 \overline{x} (\bm{x_i} - \overline{x})(\overline{x^2} -\overline{x} \bm{x_i}) + ( \overline{x^2} - \overline{x}  \bm{x_i} )^2  \Bigr\}$
$\displaystyle = \frac{\sigma_y^2}{n \Delta^2}  \Bigl\{ \bm{x_i}^2 ( \overline{x^2} - \overline{x}^2) + 2 \bm{x_i} (\overline{x}^3 - \overline{x^2} \overline{x}) + ( \overline{x^2}^2 - \overline{x^2} \overline{x}^2 )  \Bigr\}$
$\displaystyle = \frac{\sigma_y^2}{n \Delta}  \Bigl\{ \bm{x_i}^2  - 2 \bm{x_i} \overline{x} + \overline{x^2}  \Bigr\}$

添え字 $i$について平均すると,$\displaystyle \frac{1}{n}\sum_{i=1}^n \tilde{\sigma^2}_{y(x_i)} =\frac{\sigma_y^2}{n \Delta}\Bigl\{ \overline{x^2}  - 2 \overline{x} \overline{x} + \overline{x^2}  \Bigr\} =  \frac{2 \sigma_y^2}{n}$
そこで,
$\displaystyle \sigma_y^2 =\frac{1}{n}\sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\varepsilon_i}^2 \Bigr\} = \frac{1}{n}\sum_{i=i}^n \delta_i^2 + \tilde{\sigma^2}_{y(x_i)} = \frac{1}{n} \sum_{i=1}^n \delta_i^2 + \frac{2 \sigma_y^2}{n}$
$\displaystyle \therefore \sigma_y^2 = \frac{1}{n-2}\sum_{i=1}^n \delta_i^2 = \frac{1}{n-2}\sum_{i=1}^n (y_i - a x_i -b )^2$

2023年7月24日月曜日

最小二乗法(4)

最小二乗法(3)からの続き

$(a,\  b)$  に対する平均二乗誤差,$(\sigma_a^2,\ \sigma_b^2)$を考える。$(a,\  b)$ は直接測定された$(x, \ y)$の関数であるが,このうち$x_i$の誤差は非常に小さく,$y_i$の誤差だけが$n$個の独立変数として伝搬して$(a,\  b)$ に反映すると仮定する。ただし,各$y_i$自身の平均二乗誤差は共通でありこれを$\sigma_y^2$とおく。

誤差伝播の法則より,
$\displaystyle \sigma_a^2= \sum_{i=1}^n \Bigl( \frac{\partial a}{\partial y_i}\Bigr) ^2 \sigma_y^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{i=1}^n  \Bigl( x_i-\overline{x} \Bigr) ^2 = \frac{\sigma_y^2}{n \Delta^2} \Bigl( \overline{x^2}-\overline{x}^2 \Bigr) = \frac{\sigma_y^2}{n \Delta} $

$\displaystyle \sigma_b^2= \sum_{i=1}^n \Bigl( \frac{\partial b}{\partial y_i}\Bigr) ^2 \sigma_y^2 = \frac{\sigma_y^2}{n^2 \Delta^2} \sum_{i=1}^n  \Bigl( \overline{x^2}-\overline{x}x_i \Bigr) ^2 = \frac{\sigma_y^2 \ \overline{x^2}}{n \Delta^2} \Bigl( \overline{x^2}-\overline{x}^2 \Bigr) = \frac{ \sigma_y^2 \ \overline{x^2}}{n \Delta}$

残るは,$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (\varepsilon_i)^2\  $を実験値から導くことになる。ここで,$ \varepsilon_i = y_i-(a_0 x_i + b_0)  = y_i - (a x_i + b) + (a x_i + b) -(a_0 x_i + b_0) = \delta_i + \tilde{\varepsilon_i}$ である。
ただし,$a_0 x_i + b_0$が未知の真値,$a x_i + b$が平均値に対応し,$ \delta_i$が残差, $\tilde{\varepsilon_i}$が平均値の誤差に相当する。

$\displaystyle \therefore \sigma_y^2 =\frac{1}{n}\sum_{i=i}^n \Bigl\{ \delta_i^2 + \tilde{\varepsilon_i}^2 \Bigr\}$ ここで,$\displaystyle \frac{2}{n} \sum_{i=1}^n \delta_i \tilde{\varepsilon}_i =0$ である。なぜならば$\tilde{\varepsilon}_i$は$x_i$の一次関数であり,正規方程式より, $\sum_{i=1}^n \delta_i = 0$ と $\sum_{i=1}^n \delta_i x_i=0$ が成り立つから。

そこで,$y(x_i)=a x_i+b$として,$\displaystyle \tilde{\sigma^2}_{y(x_i)} =  \frac{1}{n}\sum_{i=i}^n  \tilde{\varepsilon_i}^2 = \frac{1}{n}\sum_{i=i}^n  \Bigl\{ a x_i + b - a_0 x_i - b_0  \Bigr\}^2$を求めることになるが,ここで,$(a, b)$が $y_i$の関数として誤差伝搬の法則を再度使って,$\sigma_y^2$で表せばよい(と吉澤康和さんの「新しい誤差論(1989)」に書いてあった)。


2023年7月23日日曜日

最小二乗法(3)


物理量 $x$を設定したとき,$y$が測定される。$n$回測定では,$(x_1,\ y_1),\ (x_2,\ y_2),\ \cdots (x_n,\ y_n)$ が得られたとする。2つの物理量の間には,$y\ =\ a x + b$という1次関数の関係があって,$(a,\ b)$にも物理量としての意味がある。

この$(a, \ b)$を求めるため,$\displaystyle S(a,b)=\frac{1}{n}\sum_{i=1}^n (y_i-a x_i -b)^2$を最小化するという条件を課す。すなわち,$\frac{\partial S}{\partial a}=0, \frac{\partial S}{\partial b}=0, $これから次の$(a,\ b)$に関する連立方程式(正規方程式)が得られる。

$\displaystyle \frac{1}{n} \sum_{i=1}^n x_i \bigl( y_i - a x_i - b \bigr) = 0 \rightarrow \quad a \overline{x^2} + b \overline{x} = \overline{xy} $
$\displaystyle \frac{1}{n} \sum_{i=1}^n \bigl( y_i - a x_i - b \bigr) = 0  \quad \rightarrow \quad a \overline{x} + b = \overline{y} $

これを解くと次の解が得られる。ただし,$\Delta = \overline{x^2} - (\overline{x})^2$ である。
$a=\frac{1}{\Delta}\bigl(\overline{xy}-\overline{x} \cdot \overline{y} \bigr)$
$b=\frac{1}{\Delta}\bigl( (\overline{x^2}\cdot \overline{y}-\overline{x} \cdot \overline{xy} \bigr)$



2023年7月22日土曜日

最小二乗法(2)

最小二乗法(1)からの続き

間接測定と誤差伝播(でんぱ)の法則について考えるため,物理量$z$が,独立な物理量 $a,\ b,\ c,\ \cdots$の関数で,$z=f(a,\ b,\ c,\ \cdots) $と表されるとする。

ここで,$(a_i,\ b_i,\ c_i\ \cdots)$を各物理量の$i$番目の測定値とする。また,残差を用いて,$(a_i,\ b_i,\ c_i\ \cdots) = (\bar{a}+\delta^a_i,\ \bar{b}+\delta^b_i,\ \bar{c}+\delta^c_i,\ \cdots)$とする。

$z(a_i,\ b_i,\ c_i,\ \cdots) = f (\bar{a}+\delta^a_i,\ \bar{b}+\delta^b_i,\ \bar{c}+\delta^c_i,\ \cdots) $
$\simeq f(\bar{a}, \bar{b}, \bar{c}, \cdots)+  \frac{\partial f}{\partial a} \delta^a_i + \frac{\partial f}{\partial b} \delta^b_i + \frac{\partial f}{\partial c} \delta^c_i + \cdots = \bar{z} + \delta^z_i $ 
として,$ \delta^z_i$を定義する。

残差と平均二乗誤差の関係から,間接測定される物理量zについて,$\displaystyle \sigma_z^2 = \frac{1}{n-1} \sum_{i=1}^n (\delta^z_i )^2$ が成り立つ。

$\displaystyle \therefore \sigma_z^2 = \frac{1}{n-1} \sum_{i=1}^n \Bigl( \frac{\partial f}{\partial a} \delta^a_i + \frac{\partial f}{\partial b} \delta^b_i + \frac{\partial f}{\partial c} \delta^c_i \cdots \Bigr)^2$
$\displaystyle = \frac{1}{n-1} \sum_{i=1}^n \Bigl \{ \bigl( \frac{\partial f}{\partial a} \delta^a_i \bigr)^2+ \bigl(\frac{\partial f}{\partial b} \delta^b_i \bigr)^2 +\bigl ( \frac{\partial f}{\partial c} \delta^c_i \bigr)^2+ \cdots \Bigr\}$

$\displaystyle \therefore \sigma_z^2 = \Bigl( \frac{\partial f}{\partial a}\Bigr )^2 \sigma_a^2 + \Bigl( \frac{\partial f}{\partial b} \Bigr)^2 \sigma_b^2 +\Bigl( \frac{\partial f}{\partial c} \Bigr)^2  \sigma_c^2 + \cdots$

これが誤差伝播の法則といわれるものである。
なお,ここで独立な物理量の残差の積和がゼロになると仮定している。例えば,
$\displaystyle \sum_{i=1}^n \delta^a_i \delta^b_i = 0\ $などなど

2023年7月21日金曜日

最小二乗法(1)

授業シリーズその1,オンライン授業の1コマ分を実験誤差のテーマにするべく頑張った話

昔,最小二乗法の計算は手回し計算機で大変な思いで計算していた記憶がある。実験ノートは,測定データ$x_i$と$y_i$の計算表で埋め尽くされていた。データ処理といえばこれだった。後に,関数電卓にもその機能が組み込まれるようになったが,今では Excelで一発なのかもしれない。

まず,誤差を定義する必要がある。我々が昔勉強した本では,誤差=実験値−真の値 から出発していた。しかし,最近の本ではどうも様子が怪しくなっている。そもその真の値とはなにか,どうやって定義するのか,などなど。かといって,いきなり確率分布関数を持ってきて数理統計学の枠内で議論するのも大層な話だ。精度ということばも測定の不確かさに置き換わっているようだ。

とりあえず,1つの物理量$x$ の測定を考える。その真の値が$X$であると仮定する。$n$回の測定で$\ (x_1,\  x_2,\  x_3,\  \cdots,\  x_n\ )$ という測定値が得られたとする。誤差を$\ \varepsilon_i = x_i - X$で定義する。誤差は真の値のまわりで偏らずに分布する,すなわち$\  \displaystyle \sum_{i=1}^n \varepsilon_i = 0$であるとする。これから,$\displaystyle \sum_{i=1}^n x_i = n X$となる。これを$X$の定儀式とみなすと,真の値$X$が $n$や実験データ$x_i$に依存することになってしまう。

そこで,$\displaystyle \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$で平均値を定義する。これは真の値の推定値(最確値)だと考えられる。このとき,残差=実験値−平均値,すなわち,$\delta_i = x_i - \bar{x}$ で定義する。

次に,実験データの精度は誤差のばらつきで表現される。平均二乗誤差は,$\displaystyle \sigma^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2\ $で定義し,標準偏差は $\sigma =\sqrt{\sigma^2}\ $とする。

ところで,この定義では,真の値がわからないので,誤差の$\varepsilon_i$は未知であり,平均二乗誤差も求まらない。そこで,残差の$\delta_i$から導くことを考える。$\varepsilon_i = x_i - X = x_i - \bar{x} + \bar{x} -X = \delta_i + \bar{x} - X$ となることから,

$\displaystyle \sigma^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i + (\bar{x} -X) \Bigr\}^2 =  \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + 2 \delta_i (\bar{x} -X) +  (\bar{x} -X)^2 \Bigr\}  $
$\displaystyle = \frac{1}{n} \sum_{i=1}^n \delta_i^2 + (\bar{x} -X)^2$

ここで,$ \displaystyle \sum_{i=1}^n \delta_i = 0$を用いた。また,$\displaystyle \sum_{i \neq j}^n \varepsilon_i \varepsilon_j = 0$より 上式第2項は,
$\displaystyle ( \bar{x} -X )^2 = \{ \frac{1}{n} \sum_{i=1}^n (x_i - X) \}^2 =  \frac{1}{n^2} \sum_{i, j=1}^n \varepsilon_i \varepsilon_j = \frac{1}{n} \sigma^2 $ 

これを先ほどの式に代入して移項の上整理すると,$\sigma^2 $を$\delta_i$を用いて表せる。
$\displaystyle \sigma^2 = \frac{1}{n-1} \sum_{i=1}^n \delta_i^2 $

2023年7月20日木曜日

大学教育とChatGPT(14)

大学教育とChatGPT(13)からの続き

文部科学省からの高等教育機関向けの通知があったので増えるかと思ったがそうでもなかった。日本大学から入学者選抜における生成AIツールの取り扱いについてが出ていた。

今後,このような入試関係の注意が多くなっていくのだろうか。学内でコントロールできる試験に比べて,さらに生成AIを使ったかどうかの検証は難しいと思われる。というか,これまでだって,第三者の助力支援の有無はわからなかったのではないか。

7月12日
生成AI(ChatGPTなど)の利活用に関する方針
大阪工業大学 学長 井上晋
https://www.oit.ac.jp/japanese/students/detail.php?i=9355

7月13日
本学における生成AI(ChatGPT、Bard、BingAI等)の利用について
清泉女学院大学 学長 田村俊輔
https://www.seisen-jc.ac.jp/info/2023/07/chat-gpt.php

7月13日
入学者選抜における生成AIツールの取扱いについて
日本大学
https://www.nihon-u.ac.jp/admission_info/news/2023/07/636/

7月13日
生成AI(ChatGPT、Stable Diffusion等)の使用に関する留意事項について
同志社女子大学 教務部長 真部真里子
https://www.dwc.doshisha.ac.jp/current/generative_AI

7月13日
「チャットGPT」など対話型生成AIとの向き合い方について
東海学園大学 学長 石川清
https://www.tokaigakuen-u.ac.jp/news/detail.html?id=1226

7月14日
滋賀大学における生成AIの利活用について
滋賀大学 学長 竹村彰通
https://www.shiga-u.ac.jp/15539/
https://www.shiga-u.ac.jp/15529/

7月14日
生成AIの活用について-本学の方針-
徳島文理大学 AI・データサイエンス専門委員会
https://www.bunri-u.ac.jp/info/2023071400027/

7月14日
ChatGPT等の生成系AIの使用に関する留意事項について
岐阜聖徳学園大学 学長 観山正見
ChatGPT 等の生成系 AI の使用に関する留意事項について
http://www.shotoku.ac.jp/information/images/ChatGPT_for_student.pdf
http://www.shotoku.ac.jp/information/images/ChatGPT_for_staff.pdf

7月14日
ChatGPT等の生成系AIに関する基本方針
山梨学院大学 学⻑ ⻘⼭貴⼦
https://www.ygu.ac.jp/news/2022/

2023年7月19日水曜日

死の島

君たちはどう生きるかからの続き

宮崎駿君たちはどう生きるかイメージ参照絵画の例として,ルネ・マグリット(1898-1967)の「ピレネーの城」,アルノルト・ベックリン(1827-1901)の「死の島」,ジョルジョ・デ・キリコ(1888-1978)の「通りの神秘と憂鬱」があげられていた。

マグリットもキリコも良くご存知だったけれど,ベックリンって誰だっけ?と思っていたが,なんのことはない単に忘れていただけだ。小説の死の島福永武彦(1918-1979)の長編小説であり,自分の読書体験ベスト20には必ず入ってくる作品だ。

1977年の米島君との沖縄旅行では,飛行機の切符が手に入らず,神戸から船で与論島へ向かった。一泊目の夜は高知沖の太平洋上で船が揺れたため,座っているのが気持ち悪くて船室に寝ころんだままだった。そのとき,気を紛らわすために米島君に枕元で読んでもらったのが福永武彦の死の島(新潮文庫)だった。旅行後に急いで本屋へ走った。

相見綾子と萌木素子という韻を踏んだ二人の女性の名前と広島を暗喩する暗い島の絵が印象的で,シュールレアリスティックな構成の大作だ。福永武彦の小説は新潮文庫でそれまでも何冊か読んでいた。萌木素子が描いた暗い島の絵はベックリンの死の島とつながっていて,本文中でもベックリンの死の島の解説がされていた。なお,文庫本の表紙絵はムンクなのだった。

Wikipediaには死の島(小説)の解説はなかった。



写真:ベックリンの死の島(1880)

2023年7月18日火曜日

君たちはどう生きるか

7月14日,宮崎駿(1941-)監督のジブリ作品「君たちはどう生きるか」が公開された。

事前のプロモーション広告がまったくなかったので,ネットで噂になりはじめたころも何のことかわからなかった。そういえば,岩波文化人吉野源三郎(1899-1981)の小説「君たちはどう生きるか」の題名を借りて10年ぶりに新作をつくるという話があったのを思い出した。

アニメーション作品「君たちはどう生きるか」の評価は完全に二分されていて,説明不足で期待外れの失敗作というものと,難解だけれど素晴らしい芸術作品だというものだ。いずれにせよ簡単に読み解けるようなストーリーではないらしい。そのため,ネット上のさまざまな雑音やネタバレ(考証ぶったクイズごっこや食通ぶった矛盾探し)を排除して,まずは虚心坦懐にみるのが最も重要だという説が多い。

そうはいっても,情報はどんどん入ってくるのであった。(1) 宮崎駿の個人的な体験が物語のベースになっている,(2) アニメーション作成現場についてのメタファーで構成されている,(3) 過去のジブリ作品のオマージュやシンボルが多数ちりばめられている,(4) 原作に相当するものとして次の2作品がある。失われたものたちの本(ジョン・コナリー)と幽霊塔(江戸川乱歩版,黒岩涙香版は青空文庫に)。

ところで,作品中の13という数字が宮崎駿のジブリ長編アニメーションの数だという解説があったけれど,それはちょっとうまく整合しないような気がするがどうなのか。宮崎駿監督の長編アニメーション作品をあげれば次のようになるので13ともいえるかも。
1985(44) スタジオジブリ設立
1989(48) 魔女の宅急便
1992(51) 紅の豚
1997(56) もののけ姫
2013(72) 風立ちぬ

「君たちはどう生きるか」に一番近いのが「千と千尋の神隠し」らしいけれど, そういえばそれだってどんな話だったのかをみんな十分に理解しているわけではないような気がするので(自分だけ?),なぜ今回だけとくに不評なのだろうか。

P. S.  不評の原因を[4] が解読していた。さもありなん。


写真:1枚だけ公開されたポスター(スタジオジブリから引用)


[1]『君たちはどう生きるか』を理解できなかった人のためのネタバレ謎解き(海燕)
[2]『君たちはどう生きるか』を理解できなかった人のためのネタバレ謎解き(ちょっと上級編)(海燕)

2023年7月17日月曜日

複素平面上の三角形

Twitterでyujitachさんが,次の式が複素数(a, b, c)の入れ替えについて対称なのはなぜ?という疑問を呈していた。与式は,$\left| \sqrt{a-b}+ i \sqrt{b-c}\ \right| +\left | \sqrt{a-b}-i\sqrt{b-c}\  \right | $ である。見かけ上はまったく対称でないので不思議な感じがする。

Twitterの集合知はすごいもので,早速回答が寄せられていた。$x=\sqrt{a-b},\ y=\sqrt{b-c}, \ z=\sqrt{c-a}$とおくと,$x^2+y^2+z^2=(a-b)+(b-c)+(c-a)=0$である。

与式は$|x+i\,y|+|x-i\,y|$であり,その二乗は,
$(x+i\,y)(x^*-i\,y^*) + (x-i\,y)(x^*+i\,y*) + 2\left| (x+i\,y)(x-i\,y) \right |$ 
$= 2|x|^2+2|y|^2+2\left | x^2+y^2 \right | = 2 (|x|^2+|y|^2+|z|^2)$

したがってこれは(x,y,z)の入れ替えについて対称であり,(a, b, c) の入れ替えについても対称となる。その幾何学的な意味は,(a, b, c) が表す複素平面上の三点を結ぶ三角形の三辺の長さの二乗和である。

2023年7月16日日曜日

GRAPE

NHKのコズミックフロント「天文シミュレーションがコンピューターの世界を変えた!?」で,杉本大一郎(1937-)先生が登場されていた。まだ御存命でした。重力多体問題専用計算機GRAPEの開発における伊藤智義さんと牧野淳一郎さんの話題が中心で,戎崎俊一さんはストーリーにかんでいなかった。

そんなこともあって,ネットを調べていたら天文月報に杉本大一郎のロングインタビューが5回に渡って掲載されていてなかなかおもしろかった。杉本さんは長岡京の生まれで京大の工学部電子工学科に入学し,その後理学部物理学科に転科している。

大学院では,新設された原子核物理教室(後に物理学教室になる)の林忠四郎(1920-2010)研究室(天体核)の2期生となる。この天体核研究室の出身者には,佐藤文隆,蓬茨霊運,富田憲二,松田卓也,池内了,佐藤勝彦,富松彰など錚々たるメンバーが並んでいる。

杉本さんが大学時代にマルクス経済学や武谷三男(1911-2000)の弁証法の諸問題(三段階論)に大きな影響を受けたというところが,意外だった。もうひとつはエントロピーの捉え方であり,星の進化と宇宙の進化がともに非平衡熱力学的な世界観で統一的に考えることができるという話が展開されていた。元素合成のような具体論は野本憲一(1946-)に任せてしまい,もっと大きな話に関心があったようだ。


2023年7月15日土曜日

核融合スタートアップ

核融合に関する自分の知識が古いままなので,新しい話題についていけてない。

いちおう原子核物理を専門としていて,名大のプラズマ研を見学し,友達には核融合をテーマとして原研に就職した人たち(佐藤正泰君とか藤井常幸君とか)がいて,院生時代には,レーザー核融合研究センターの壮大な建物を横目に原付で核物理センターに通っていたので,それなりの耳学問的知識はあるのだけれど,そこまで真面目に勉強したわけではない。

自分のこれまでの乏しい知識はおよそ以下の通り。
 ○制御核融合の方式には,磁場閉じこめ慣性閉じこめがある。
 ○前者はトカマク型と,なんだかよくわからないヘリカル型に分けられる。
 ○後者はレーザ型と,あまりよくわからないイオンビーム型に分けられる。
 ○現在のトップはトカマク型の国際熱核融合実験炉ITERと,これに続くレーザ型のローレンス・リバモア国立研究所国立点火施設(NIF)のもの。ともに莫大なコストがかかる。
 ○これらの延長線上で実証炉や商業炉に到達するのはかなり先の話

そんなわけで核融合スタートアップの現状がどうなっているのか調べようとしていると,文部科学省の核融合の挑戦的な研究の支援の在り方に関する検討会の資料があった。京都フュージョン・エンジニアリングの共同創設者でもある武田秀太郎(1989-)のものだ。それらをまとめると+αで次の知識が得られた。

 ○核融合の研究開発が,国や大学から民間企業(スタートアップ)に移った。  
 ○高温超伝導による強磁場のトカマクでは装置のサイズが1/1000で済む。
 ○レーザー核融合のエネルギー充填を半導体レーザーにしてエネルギー効率を高めれば,パルス周期が非現実的な数時間から1/10秒以下にできる。
 ○FRC(逆転磁場配位型)などの新しい方式や燃料 p+11B が登場してきた。
 ○HelionやTAEを除き,中性子の運動エネルギーで湯沸かし発電の範囲に留まる。
 ○p+11Bはマシだが,中性子による放射化やトリチウムの問題は残っている。
 ○核融合炉でもトリチウムやHe3を巡って,核燃料サイクルという概念がある。

[1]TAE Technologies(米 1998-  1100億円)FRC p+11B
[2]General Fusion(加 2002-  500億円)Magnetically Confined Acoustic Compression
[3]Tokamak Energy(英 2009-  200億円)Spherical Tokamak 高温超伝導磁場
[4]First Light Fusion(英 2011-  100億円)Hyper Velocity Inertial Confinement
[5]Helion Energy(米 2013-  650億円)FRC D+He3 -> Microsoftが電力購入契約
[6]Commonwealth Fusion Systems(米 2018-  2600億円)Tokamak 高温超伝導磁場
[7]京都フュージョンエンジニアリング(日 2019-  120億円)
[8]EX-Fusion(日 2021-  18億円)レーザー核融合
[9]Helical Fusion(日 2021-  0.7億円)ヘリカル型核融合
[11]民間資金での核融合研究(武田秀太郎他)
[12]トカマク式核融合が超小型化(野澤哲生)
[13]核融合に第3の方式が登場(野澤哲生)

2023年7月14日金曜日

シンセティック・メディア(4)

シンセティック・メディア(3)からの続き

ニュースでデジタル分身という言葉をみかけた。シンセティック・メディアで生成するパーソナリティに対して,自分の使ってきた仮想人格という表現が妥当なのかどうか,ChatGPTにきいてみた。
Q:User
シンセティック・メディア が作り出すパーソナリティを何とよぶのが一般的でしょうか。(1) バーチャルビーイング,(2) 仮想人格,(3) デジタル分身,(4) その他 あるいはもっと適当なものがあれば紹介してください。

A:ChatGPT
シンセティック・メディアは、AIやコンピュータグラフィックスなどを使用して作られる人工的なメディアコンテンツを指します。それによって作り出されるパーソナリティは通常、「バーチャルビーイング」や「デジタル分身」などと呼ばれますが、用語は使用するコンテキストや状況によります。以下に各用語の一般的な使用方法を説明します。

バーチャルビーイング: これは、デジタル空間に存在する人工的なエンティティを指します。これらは通常、AIや他の形式の計算技術を使用して作成されます。バーチャルビーイングは通常、人間のように行動したり、人間のような特性を模倣したりします。 
仮想人格: この用語は、バーチャルリアリティ環境内のキャラクターを指すことが多いです。これらのキャラクターは人間の特性や行動を模倣することができ、また一部の設定では人間のユーザーと直接対話することができます。 
デジタル分身: これは、特定の人物、特に実在の人物のデジタル表現を指します。デジタル分身は、その人物がオンラインで行う活動や交流を補完するため、または代替するために使用されます。 
その他: 他の関連用語には「AIアバター」、「デジタルヒューマン」、「バーチャルインフルエンサー」などがあります。これらの用語は、特定の種類のシンセティックメディアや特定のコンテキストで使用されることが多いです。
これらの用語は一部重複している部分がありますが、それぞれ特定のニュアンスや用途を持っています。どの用語が最も適切かは、そのパーソナリティがどのように作られ、どのように使用されるかによります。

2023年7月13日木曜日

大学教育とChatGPT(13)

大学教育とChatGPT(12)からの続き

前期末の試験やレポートが近づいてきたので,再び各大学からの注意喚起が増えてきたような気がする。現状は森木銀河さんのページ(https://note.com/pogohopper8/n/n3126b312f209)が最も詳しい。ところでgoogle検索の仕様が変わったのだろうか。+site:ac.jp では絞り込みができず,ac.jp だけにしたほうが良いようだ。そこで,ac.jp 生成AI|生成系AI|ChatGPT|人工知能  で google検索している。

文部科学省が7月13日付けで,大学・高専における生成 AI の教学面の取扱いについてという通知をだした。その趣旨は,
(1) 各大学・高専において、具体的に行われている教育の実態等に応じて対応を検討することが重要であり、学生や教職員に向けて適切に指針等を示すなどの対応を行うことが望ましい
(2) 技術の進展や指針等の運用状況などに応じ、対応を適宜見直していくことが重要である。
ということだ。後半の留意すべき観点では,(1) 生成 AI と学修活動との関係性、成績評価,(2) 生成 AI の技術的限界(生成物の内容に虚偽が含まれている可能性),(3) 機密情報や個人情報の流出・漏洩等の可能性,(4) 著作権に関する留意点,の4項目について言及している。

6月19日
授業におけるChatGPT等生成AIの利用方針について
松山大学 学長 新井英夫

6月27日
学修における「ChatGPT」等の生成系 AI の利用について
横浜市立大学 学長 相原道子

6月27日
生成AI(生成系AI)の使用について(ガイドライン)
玉川学園理事(高等教育担当) 小田眞幸・玉川大学 ICT教育研究センター長 倉見昇一

6月30日
教育活動における生成系AIの利用に関する留意事項について
北海道教育大学 理事(教育担当) 海老名尚

6月30日
生成AI(ChatGPT等)の利用について
京都ノートルダム女子大学

7月3日
本学における生あきょう成系AIへの対応について
京都先端科学大学 学長 前田正史

7月3日
Chat GPT をはじめとする生成 AI の利活用について
宇都宮共和大学

7月4日
聖泉大学における ChatGPT 等の生成系 AI の使用に関する基本方針
聖泉大学 学長 唐楽寧

7月6日
生成系AIの利用に関する留意事項について
札幌大学 学長 大森義行

7月5日
生成AIの活用について
名古屋大学 副総長(教育担当) 藤巻朗

7月5日
生成AIを利用したレポート課題等の作成における留意点と成績評価における取り扱いについて
大阪法科経済大学 学長 中井英雄

7月5日
生成AI(人工知能)の利用について
志學館大学

7月6日
ChatGPT等の生成系AI利用の留意事項について
園田学園女子大学 学長 大江篤

7月6日
学習における生成 AI の利用について
埼玉大学 理事(教学・学生担当)・副学長 柳澤哲哉

7月6日
生成系 AI の利用について
仙台大学 学長 髙橋仁

7月7日
定期試験・レポート作成等における生成系AIツールの使用について
関西大学 副学長(教育推進担当)

7月7日
学生の皆さんへ~生成AIの利用における基本指針と注意点~
広島国際大学

7月7日
生成AIの利用に関する留意事項
千葉科学大学

7月10日
本学における生成系AI 活用に関する基本方針について
ノートルダム清心女子大学 学長 シスター 津田葵

7月11日
本学の教育現場における生成AIへの向き合い方
滋賀医科大学 理事(教育・学生支援・コンプライアンス担当)・副学長 松浦博
滋賀医科大学 情報総合センター教授・医療情報部長・マルチメディアセンター長 芦原貴司

7月12日
文星芸術大学における生成AIの利用ついて
文星芸術大学 学長 田中久美子

7月12日
ChatGPT 等の生成系 AI について
創価大学 通信教育部長 吉川成司

2023年7月12日水曜日

ローラ・ニーロ

1969年の11月ごろヒットした,フィフス・ディメンションウェディング・ベル・ブルースである。

作詞作曲者がシンガー・ソングライターのローラ・ニーロ(1947-1997)であり,1967年に彼女自身のデビューアルバム「モア・ザン・ナ・ニュー・ディスカバリー」に収録されていたとは知らなかった。そもそも,ローラ・ニーロって聞いたことあるわという自分の知識≒記憶が,ニーノ・ロータ(1911-1997)やロバート・デ・ニーロ(1943-)と混線しているのであった。いずれもイタリア系なのでよけい話がややこしい。

ローラ・ニーロが作った楽曲は主に他のアーティストがヒットさせることになった。フィフス・ディメンションがヒットさせた曲でいえば,ウェディング・ベル・ブルースの他に,ストーンド・ソウル・ピクニックスィート・ブラインドネスイーライズ・カミングブローイング・アウェイセイヴ・ザ・カントリーとなっている。いずれも懐かしい。

ブラッド・スウェット・アンド・ティアーズアンド・ホエン・アイ・ダイもローラ・ニーロの作詞作曲なのだけれど,ピータ・ポール・アンド・マリーがこれを歌っているのは聞いたことがなかった。

1960年代後半から1970年代初めのにかけての中高生時代,洋楽ポップスとSFが趣味だった。入門はビージーズや後期ビートルズからだった。中でも誰を一番推していたかというと,フィフス・ディメンションだった。自分が最初に買ったアルバムも,フィフス・ディメンションの日本版のファーストアルバムだった(たぶん,海外の1stアルバムUp Up and Away と2nd アルバム The Magic Gardenを日本向けに組み合わせたのだと思う)。そんなわけで,3edアルバムの Stoned Soul Picnic が日本ではセカンドアルバムとなったのではないか。その後の,The Age of AquariousPortrait とあわせて4枚ものアルバムを買ったのはフィフスディメンションだけだった。


2023年7月11日火曜日

Threads(2)

Threads(1)からの続き

7月6日から始まったThreadsの登録数が5日で1億件を越えた。ChatGPTより速いスピードだった。Twitter,Mastodon,Bluesky,Threadsと巡回するのが面倒になってきた。そこで,自分が使ったことのある主なSNSについてまとめみる。

Facebook(2004.2-):憶えていないけれどいつから使い始めたのだろうか。ここに登場するのは知り合いばかり。あと,若干の有名人をフォローしているのでその情報は貴重だ。萩原雅之,橋本大也,増井俊之,岡口基一,神田敏晶,千坂恭二などなど。高齢化が進んでいて,若者は参加していない。友達の数は395人。

Mixi(2004.2-):これもいつから使い始めたのだろうか。誰かのページを見ると足跡が残るのだった。一次かなり盛り上がっていたが,アカウントは削除してしまった。

Twitter(2006.3-):2008年8月11日にiPhoneを買って8月18日にまちがえて,TwitterクライアントのNatsuLionをインストールして以来だ。Twilogに利用記録がある。最近のタイムラインアルゴリズムはグダグダ担っていたが,イーロンマスクに買収されて以後,さらにもろもろ全部おかしくなってしまった。それでも多くの人が残っているのでやめられない。フォロー中915人,フォロワー 953人,投稿数9758件。

Instagram(2010.10-):登録したのはiPhoneのアイコンが古いバージョンのときからなのだが,実際に写真をあげるようになったのは最近のことである。キラキラ投稿が多い中,地味に散歩写真をあげている。フォロー中331人,フォロワー288人,投稿数695件。

Mastodon(2016.3-):2017年4月の最初のブームで複数のMastodonインスタンスに登録した。そのうち自分のアカウントが残っているのが,日本のメジャーインスタンスであるmstdn.jpと数式を投稿できるmathtod.onlineの2つだけだ。サーバーが分散しているので,一番期待できるはずなのだけれど・・・。フォロー中285人,フォロワー319人。

Bluesky(2023.1-):結城浩さんから招待コードをもらうことができて,2023年5月中旬から使い始めた。参加者総数が少ないので,なかなか必要な情報が得られない。タイムラインはOKかと思われる。フォロー中86人,フォロワー32人,投稿数6件。

Threads(2023.7-):このムーブメントに乗り遅れないようにと予約したものの,ぼやぼやしていたら100万人番目は越えてしまっていた。まあ1億から見れば,1%の程度の位置にはあるのだけれど。タイムラインアルゴリズムがいまいちなのと,真面目な話をしにくい雰囲気が煽られている。フォロー中336人,フォロワー102人,投稿数11件。


2023年7月10日月曜日

エアレボルーション

最近お薦めに上がってきたエアレボルーションは,島田雅彦(1961-)と白井聡(1977-)とジョー横溝(1968-)が毎週ゲストを招いて対談するチャンネルだ。

長い対談が月額770円で週3回配信されるが,そのうち前半の40分から120分ほど無料で公開されている。外山恒一,鈴木涼美,柄谷行人,鈴木エイト他,多彩なゲストが続いている。無料分だけを見ているが,1月に配信されていた金平茂紀(1953-)の回がおもしろかった。

金平さんは昨年秋まで報道特集のキャスターをしていて,ときどきみていたが,ソ連崩壊の1991-1994までJNNのモスクワ支局長として派遣されていた。島田雅彦は東京外国語大学のロシア語科出身で,白井聡は研究テーマがレーニン主義,社会思想,政治学だ。このベストメンバーがウクライナ=ロシア戦争について語っていた。

金平さんはこの正月に1週間ほどモスクワに観光客として旧知の人を訪ねており,現在のモスクワの様子を伝えていた。我々が目にする耳にするのは,西側のフィルターを通過して,日本のマスコミによって増幅された大政翼賛会的な情報だけなので,新鮮なものがあった。

ロシアは見かけ上ほとんど疲弊しておらず,このままだとウクライナ戦争がベトナム戦争化しそうだとのことだ。アメリカがクラスター爆弾を提供するというのも日本のテレビではシラッと何も問題がないかのように伝えられている。

昨年2月に始まったウクライナ戦争と7月の安倍首相殺人事件を奇貨として,防衛費が倍増され南西諸島へのミサイル配備が進むということになってしまった。

2023年7月9日日曜日

警告メッセージ

7月7日七夕に遭遇した怖い話。

Blogspot(google)から警告がとどいた。最初は,投稿したページになにやら警告マークが出てきて何が何だかよくわからずに焦った。ログアウトして再アクセスしてみると,警告付ではあるもののワンクッションおけば一応は見える最低限のレベルものだった。

YouTube(これもgoogleだ)で収益化できなくなった哲学系ユーチューバ−じゅんちゃんが遭遇した理不尽な話などを散々聞いていたので,これはまずいことになったと思った。あらためて自分の記事を読み返してみて,話題のイーロンマスクとTwitterの話がまずかったのか,最後のBlueskyの招待枠の話がまずかったのか,表現に過激なところがあったのか,誰かに刺されたのか・・・わからない。気になるところをすべて無難なものに修正して再投稿したが,同じ警告がついてしまった。がーん。

少し頭を冷やしていると,googleアカウントにBlogspot運営側からメールが届いていたのに気がついた。引用すると次のようなものだった。
 ご存知のこととは存じますが、Blogger のコミュニティ ガイドライン では、Blogger で許可されるコンテンツと禁止されているコンテンツについて概説されています。Blogger では、お客様の「 Bluesky(2)」というタイトルの投稿について審査の必要があるとの報告を受けました。審査の結果、この投稿には慎重に扱うべきコンテンツが含まれていると判断し、投稿を閲覧しようとした読者に警告メッセージが表示されるようにいたしました (投稿の URL: 略)。読者がこの投稿とブログを閲覧するには、この警告を承諾する必要があります。

さらに,

お客様のブログ投稿に警告メッセージが表示されるようになった理由:この投稿のコンテンツが、アダルト コンテンツに関する Blogger のポリシーに違反していることが判明いたしました。

 えーっ,それはないわ。修正して再審査を申し込めということだけれど,どこがアダルトなのかさっぱりわからない。さらに熟考してみると,どうやら参考コードのなかの英文字列がやや微妙だったことに気付いた。これを直して再審査を申し込んだがなしのつぶてである。

しかたがないので,新しく微修正版(アルファベット3文字×2箇所修正)を投稿したところ無事にパスした。

教訓:言論や表現の自由は,その手段をAIでブラックボックス化されたビッグビジネスに握られている限り,常に風前のともしびであり,相当なコストを費やすことなしに説明責任など果たされることは期待できない。分散IDと分散SNSの普及が待たれる。

2023年7月8日土曜日

Threads(1)

Bluesky(2)からの続き

MetaがはじめたTwitterにかわるSNSがThreadsだ。7月6日8:00ごろから時間前倒しでリリースしたところ,2時間で200万人,4時間で500万人,7時間で1000万人,半日で3000万人,2日7000万人のユーザーを集めたらしい。

メタの旧社名はフェイスブックであり,マーク・ザッカ—バーグ(1984-)がメタバースに入れ込むまではSNSの会社だった。フェイスブック社は2012年に写真・動画共有SNSのインスタグラム社を買収した。インスタグラムは,2010年にAppStoreに登場し,2ヶ月で100万人,8ヶ月で500万人,約1年で1000万人のユーザを集めている。現在のアクティブユーザ数は10億人のオーダーだ(登録アカウントは20億)。インスタ映えは普通名詞になってしまった。

Threadsをはじめるには,インスタグラムのアカウントが必要である。巧妙な作戦だ。インスタグラマー10億人のうち1%が参加すれば,簡単に1000万人に達するわけだ。周到に準備されたためか,他のマイナーなSNSとは異なり,これだけ短時間に集中して負荷がかかるスタート時のアクセスを軽々とこなしているように見える。Blueskyはそれに対応できるだけのリソースを持たないので招待制で細々とやってきたわけだ。

ユーザインターフェイスや,機能についてはまだ揺らいでいて評価は定まっていないけれど,迷走状態のTwitterがさらに霞んでしまいそうな雰囲気だ。自分が使えるようになって最初のタイムラインには,瀬戸弘司やドリキンの顔とフォローもしていないスレッドが流れてきて訳が分からなかったが,どうやらフォロー数が少ない場合,アルゴリズムでお薦めをコントロールしているらしい。その他の特徴は以下の通り。

 ○投稿文字数は500字まで,写真10枚,動画は5分まで
 ○Web版はないが(アプリに誘導される),自分の投稿へのリンクは可能
 ○ハッシュタグや検索(ユーザアカウントを除く)は機能しない
 ○いいねの数はわかるが,リツイート=再投稿の数はわからない
 ○タイムラインの+マークからすぐにフォローできる
 ○引用とRT(再投稿)はあるが,DMはない
 ○アカウント削除には,インスタグラムのアカウントごと削除する必要
 ○社会派,物理屋などはまだあまり流れ着いていない

そんなわけで,7月6日はThread祭りの日だった。フォロー関係の構築で一日がつぶれる。



写真:Threadsの参加証@Instagram(2023.7.6)

[4]Threads国内フォロワー数(UserLocal)
[6]世界ソーシャルメディア統計 (Stat Counter)


2023年7月7日金曜日

Bluesky(2)

Bluesky(1)からの続き

いよいよTwitterがややこしくなってきた。7月1日,イーロン・マスク(1971-)はTwitterアカウントの種類に応じて一時的に閲覧回数の制限を設けた。認証済みアカウントは6000件(1万件),未認証アカウントで600件(1000件),作成されたばかりの未認証アカウントで300件(500件)というわけだ(括弧内は7月2日の泥縄的修正値)。制限の理由については,インターネット上のデータ収集や処理における不正な操作の急増に対応するためとしている。

実際には,TwitterがAPI課金を急騰させたことを原因とするウェブスクレーピングの増加だとか,サーバーを運用しているクラウドとの契約の関係だとか,Twitterコードのバグが自分自身に対するDOS攻撃をしたのが原因だとか,諸説がある。いずれにせよTwitterのコントロールがいよいよ効いていないことが明らかになった。

このため,再びTwitterから他のSNSへの流失が進んでいるらしい。その候補の一つはジャック・ドーシー(1976-)がはじめたBlueskyだけれど,招待制の登録者はまだ20万人だ(Twitterは4.5億人)。他に T2 とか MetaのThreads が話題になっている。どうなることか。現在のところ,Twitterに流れる情報の方がまだまだ有用度が高い。

そのBlueskyの歩き方というドキュメントがmd形式で流れていた。pdfに変換しようと考えた。たぶんpandocが使えるはずなのだが,調べてみると一手間必要だった。これをまとめると次のようになる。
$ brew install pandoc ✓
$ brew cask install mactex ✓
~/.zshrc に次の行を追加
export PATH=/usr/local/texlive/2019/bin/x86_64-darwin/:$PATH
$ source ~/.zshrc
$ pandoc bluesky.md -o bluesky.pdf --pdf-engine=xelatex -V documentclass=bxjsarticle -V classoption=pandoc
これをシェルスクリプトにすると
$ cat md2pdf.sh
#!/bin/zsh
# usage mdspdf.sh test
# input test.md output test.pdf
#
pandoc $1.md -o $1.pdf --pdf-engine=xelatex -V documentclass=bxjsarticle -V classoption=pandoc

これで無事にmdファイルをpdfファイルに変換できた。

P. S. Blueskyの招待コードが若干余っているので必要な方はメール,TwitterのDM,Facebook Messengerなどでご連絡ください。

2023年7月6日木曜日

大学教育とChatGPT(12)

大学教育とChatGPT(11)からの続き

ChatGPTにもそろそろみんな飽きてきたけれど,世間ではまだダラダラと続いている。GPT-4も最近はどうも調子がすぐれない。難しい問い対してブチ切れてしまう現象が頻発している。最新のデータにアクセスできるBing連携の部分も公開が停止されてしまった。かといって,Bard,Perplexity,Bingなどがイマイチである状況には変わりがない。

そうこうしているうちに,国産LLMのニュースがいろいろと入ってきた。しかしそれらは企業・行政向けや研究開発用の特殊なシステムを指向している。いずれもパラメタ数が数十B以下の小規模LLMなのだ。良質な日本語テキストをたっぷりと学習させた,自由に使える標準的な日本語LLMが現れてほしい。
6月28日
ChatGPT等の生成AIについて
常磐大学 学事センター長 河野敬一・学生支援センター長 菅田浩一郎

6月29日
佐賀大学における生成AI を始めとするデジタル技術の利活用に関する基本方針について
佐賀大学

6月29日
Chat GPT等の利用について
周南公立大学 副学長(教学担当) 渡部明

6月29日
学修における生成系AIの使用について
恵泉女学園大学

6月30日
生成AIの使用に関する注意喚起
奈良教育大学 副学長(教育担当) 越野和之

7月1日
金城大学生成AI(ChatGPT、Midjourney等)の活用に関する基本的な考え方
金城大学 学長 米島學

7月3日
生成系AIの利活用に係る注意喚起
筑波技術大学 情報処理通信センター

7月3日
生成AI活用に関するガイドライン(学生向け)(ver. 1.0)について
島根県立大学 学長 山下一也

7月3日
ChatGPTをはじめとする生成系AI利用についての本学の基本的な考え方
沖縄大学 学長 山代寛

7月3日
京都府立大学生成AI利用ガイドラインの策定
京都府立大学 AIデータサイエンス教育研究センター

7月4日
ChatGPT等の生成系AIの利用について
日本社会事業大学

7月4日
仁愛大学におけるChat GPT等生成系AIの活用に係る基本方針
仁愛大学 学長 田代俊孝

2023年7月5日水曜日

生成AI学校向けガイドライン

7月4日,文部科学省は,日本の初等中等教育の学校を管理している各都道府県・各指定都市教育委員会教育長や都道府県知事などに対して「初等中等教育段階における生成 AI の利用に関する暫定的なガイドライン」の 作成についてという通知を発出した。

マスコミのニュースを聞く限り,例によって,各大学のガイドラインのような生ぬるいものがでてきたのかと思っていた。ところが,現物は24ページ相当のプレゼン資料を含めて16ページという,かなり気合いが入ったものだった。

ところでその中身をみると,山越えの暗い見通しの悪い道を,車内からワァーワァーいわれて,アクセルとブレーキを踏みながらとばしているような微妙なことになっている。

ポイントは,(1) 利用規約を守れ(ChatGPTは13歳以上+18才までは保護者同意,Bingは未成年には保護者同意が必要,Bardは18歳以上),(2) パイロット的な取り組みを進めよ,(3) 一般の学校はおとなしくせよ,というものだった。AI以前の話なのだけれど「全ての学校で,情報の真偽を確かめること(いわゆるファクトチェック)の習慣付けも含め・・・」とか,そもそも大人ができていないのでは・・・。

一番言いたかったのではないかと思われる事項は,チェックリストの第8項目にあった。
 「読書感想文などを⻑期休業中の課題として課す場合には,AIによる生成物を自己の成果物と して応募・提出することは不適切又は不正な行為であること,自分のためにならないことなどを十分に指導しているか。保護者に対しても,生成AIの不適切な使用が行われないよう,周知・理 解を得ているか」

追伸:この通知を出したのは,初等中等教育局長の藤原章夫さんだ。平成24年(2012年),学長・事務局長らと文部科学省に行ったあと新橋あたりの居酒屋で一度会っている。そのときは,初中局の教職員課長だったのか。大阪教育大学は教職大学院の設置申請を計画中であり,新任の事務局長の若井祐次さんが大学振興課の方々と併せてセッティングした。長尾先生と栗林先生はそれについて若井さんを大層評価していた。藤原さんがかつてフランス大使館にいたころのことが話題になっていたが,ひたすらよろしくお願いします的なことで終始していた。

2023年7月4日火曜日

シンセティック・メディア(3)

シンセティック・メディア(2)からの続き

シンセティック・メディア=マルチモーダルなAI技術による仮想人格的インターフェースだとすると,その適用分野や帰結がどうなるのかが気になる。想定される分野を考えてみると,結局,新聞紙面のようなことになるような気がしてきた。

図:シンセティック・メディアの主な適用分野


個別に何が起こるか考えようと思ったが,そもそも生成系AIがどのように利用できるかというと,(1) 対話型モード,(2) 一括処理モード になる。昔の会話型TSS処理とバッチ処理の再来だ。シンセティック・メディアが有効なのは,前者の対話型モードの場合だろう。

対話型モードを使うときに,自分が,(1) 受信サイドなのか,(2) 発信サイドなのかで意味が異なってくる。とりあえず,利用のための必要条件やリソース等を度外視して考える。

(1) 受信サイドでは,自分の疑問に対して対話的に回答を得ること,対話型でコンテンツ・リソースを創作すること,共感を得るための対話相手としての時間を費やすこと,などがあげられる。本や論文の単なる要約だけならば,バッチで十分である。多くの場合,ある種の専門家としての仮想人格が必要になる。

 (2) 発信サイドでは,自分の分身を作成しておけば,時間と空間の制約を越えて,多数の人と対話しながらメッセージを伝えることができる。ただ,普通の人がSNSで発信するのはいいとして,視聴者がさらに対話的に深いコミュニケーションを取りたいとなるようなケースはそれほど多いのかという疑問は残る。

これらを別に視点から見ると,(1) 専門家としての仮想人格と,(2) 友人としての仮想人格の2種類のニーズが発生するということなのかもしれない。専門家というのは,必ずしも学術分野における研究者やいわゆる専門職だけを指すのではなく,生活や趣味,普通の職業や地域社会などでの現実世界の細部に関する現実の経験を持っているかどうかが鍵になる。

また,上記の仮想人格のそれぞれに対して,(1) 非実在人物に対応,(2) 歴史上の実在人物に対応,(3) 現存の実在人物に対応,の場合が考えられる。仮想人格も著作物になるのだろうか。面倒な話ではある。

さらに人間=現実人格(P)と仮想人格(V)とのコミュニケーションの時空形態からすれば,現在のインターネット・コミュニケーションと同様に考えられる。時間的には,(1) 同時交流(チャットやライブ)と,(2) 遅延交流 (メールやブログ)が,空間的には,(1) 一対一交流(P−V)と (2) 集団交流(P^m ×V^n ) が考えられる。ここで,仮想人格は複数人存在できるということに注意が必要だ。

そうなると最重要問題は,PとVが区別できるかということに帰着するのかもしれない。まさに フィリップ・K・ディックの「アンドロイドは電気羊の夢を見るか」に登場するフォークト=カンプフ感情移入度検査法 が必要な時代になってしまった。

2023年7月3日月曜日

満月

満月が出てるよというので,ベランダに出て見ると南東の低い空につぶれた楕円形に光る月が出ていた。満月じゃないのではと,iPhoneの六曜で月齢を確認してみると満月でした。

先日の人間ドックでは眼鏡をかけて右眼が0.4,左眼が0.9だった。そんなわけで,裸眼では無限遠方の光点はたいてい歪んでぼやけて見える。早速眼鏡をかけて月の形を確認してみると確かに満月だ。

ところで,なぜこんな低い空にかかっているのかと思ったけれど,良く考えれば,昨日が夏至からおよそ10日後の半夏生。春分や秋分における月の南中高度は90度−緯度である。これに地球の公転面に対する自転軸の傾き23.4度をプラスマイナスしてあげれば,冬至や夏至の南中高度がわかる。

探してみると奈良県の各市町村の緯度経度の値が見つかった。天理市は,東経135.8度,北緯34.7度になるので,夏至における月の南中高度は 90-34.7-23.4=31.9度となる。それは低いわけだ。これが冬至になれば,90-34.7+23.4=78.7度となる。こんなにも違うのか。梅雨時に満月を見ることはあまりなかったので,ちょっとビックリ。

天理市の経度緯度は,市役所の位置だけでなく,東西南北端の値も出ている。このうち西端がいつもの散歩コース上にあり,ファミリー公園のちょっと東側の田んぼの中だ。



図:国土地理院の地形図から天理市西端近傍

2023年7月2日日曜日

雨宮処凛


菅野完の論は,日本の現在の思想状況というか,差別的な態度が根強く蔓延って弱者を圧迫している現状を良く説明するものだと思える。

通俗道徳論≒自己責任論≒新自由主義という近似式から,1945年にリセットされた日本の資本主義が,人権という車輪を欠いたまま曲がって走り続け,その結果,自民党や日本維新の会が力を持っている現状もある程度は納得できる(アメリカによる日本支配の構図との関係がどうなっているかはちょっと・・・)。

もう一つ気になったのは,最近の日本維新の会の著しい成長の原因は何かという時間スケールの問題については,必ずしも満足行く答えを与えていないということだ。そんなとき,マガジン9の「なぜ維新なのかについてのロスジェネ的考察」で,雨宮処凛(1975-)が別の角度から議論していた。"自分の力で" がんばって要約すると次のようなものだ。
○日本維新の会への支持が広がっている。それはなぜか。
○特に「ロスジェネ世代の維新支持」という現象を考察する。
○40代以下の世代(ロスジェネ〜ゆとり・さとり〜)は「経営者マインドや為政者マインドをナチュラルに搭載している」例え,末端労働者であっても。
○彼ら世代には,労働組合や労働運動より「いつか一発逆転すること」の方がずっとずっとリアリティがあるから。
○この世代=雨宮は「自由な時代だから,人は可能性に満ちている。夢をかなえろチャレンジしろ。」という脅迫的な圧力にさらされてきた。
○そのロールモデルは,ホリエモン,ひろゆき,ZOZO前澤やユーチューバ−など,全員トリッキーな一発逆転系自己責任論者である。
○我々はずっと政治にDVを受けている。優しいふりをした人に裏切られるより,最初からひどいとわかってる人の方がまだましという気持ちになる。それは究極の消去法であり,唯一できる無意識の自己防衛だ。
○維新は確実に「どうせ世の中も人間もロクなもんじゃない」ということを体現している。そこが「現実がわかっているリアリスト」とある種の人々には見えてしまう。だからこそ,個別議員の犯罪歴などがこれほど暴かれてもほぼノーダメージという状態に繋がっている。
○我々は理想を語る人がマヌケにしか見えないという世界に住んでいる。現実がひどければひどいほど意地悪そうな人が支持を集め、理想を語る人が嘘つきの詐欺師にしか見えない地獄のような逆説にどうしたら対抗できるのか。

ロスジェネ世代の一発逆転のロールモデルであるYouTuberは,通俗的道徳規範の体現者≒禁欲的なジャパニーズプロテスタントではない。そうではあっても,自己責任論者の一種には違いないわけで,新自由主義との相性は抜群だ。

2023年7月1日土曜日

ロスジェネ世代

ロスジェネ世代という表現がよく用いられるので,この記事で勉強した。しかし,あまりしっくりしないので,GPT-4にきいたりWikipediaで調べた結果,日本におけるジェネレーションについてはおおむね次のようにまとめられそうだ。もちろん年代は厳密なものではない。


1.団塊世代(1947年〜1949年生):第二次世界大戦後のベビーブームにより生まれた世代。経済成長を経験し日本の復興を支えた。

2.(しらけ世代)(1950年〜1964年生):1955年〜1964年生には新人類という名前があるらしいが,1950年〜1954年の我々の世代にはまともな名前がないのだ。第Ⅰ期学習指導要領(規準化+道徳)の世代

3.バブル世代(1965年〜1970年生):バブル経済が最高潮に達した時期に大人になった。そのため、バブル経済の恩恵を受けて育った世代ともいえる。第Ⅱ期学習指導要領(現代化)の世代

4.団塊ジュニア世代(1971年〜1974年生):団塊世代の子供たちにあたる。親の団塊世代が生んだ豊かな時代を享受したが,バブル崩壊の就職氷河期と重なることになった。第Ⅲ期学習指導要領(ゆとりの始まり)の世代

5.就職氷河期世代・ロスジェネ世代(1975年〜1985年生):就職氷河期(バブル崩壊後の厳しい雇用環境)に直面した。そのため以後も経済的に困難な状況に置かれたものが多い。第Ⅲ〜Ⅵ期学習指導要領(プレゆとり)の世代

6.ゆとり世代さとり世代(1986年〜1999年生):学校での競争が緩やかになり,生活ペースが自由になるゆとり教育方針のもとで育った。物欲や出世欲が薄く,現状に満足しているとされる。第Ⅳ・Ⅴ期学習指導要領(ゆとり→生きる力)の世代

7.Z世代(2000年〜2011年生):デジタルネイティブと呼ばれ,インターネットやスマートフォンなどのテクノロジーと共に成長。オンライン上でのコミュニケーションに長け,多様性を尊重する傾向がある。第Ⅵ期学習指導要領(脱ゆとり)の世代

8.α世代(2012年生〜):Z世代以降のテクノロジーを完全に体験して育つ最初の世代。詳細な特性はまだ明確には定まっていない。第Ⅶ期学習指導要領(学び方)の世代


以下の図では,各世代が10歳のときの対応する学習指導要領が並行してわかるようにした欄と,20歳のときの経済状況のイメージをつかむための欄を加えたものを示した。



図:日本の世代と学習指導要領の対比