2022年2月22日火曜日

三次方程式の解

 二次方程式の解は,与えられた2次式を平方完成すればよいので,公式を忘れても導ける。まあ,平方完成の手順を理解して導出できるくらいなら,かつて曾野綾子に「二次方程式の解の公式を学んだことは,人生において何の役にもたたなかった」とボロクソに腐された解の公式もすぐに出てくるだろうから心配する必要はない。

準備として,$x^3=1$の解を,$\{ 1,\ \omega=\frac{-1+\sqrt{3} i}{2}, \ \omega^2=\frac{-1-\sqrt{3} i}{2} \}$としておく。

三次方程式$a x^3 + b x^2+ c x + d = 0$は,$x^3 +p x + q =0$ の形にすることができる。次に,因数分解の公式,$x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-x y -y z -z x)$を用いる。つまり,$p = - 3 y z$,$q = y^3 + z^3$とすれば,もとの三次方程式は因数分解できることになり,すなわち,解が求まることになる。

ここで,$y^3$と$z^3$の対称式を考えるのがポイントである。$p^3=-27 y^3 z^3$から,$y^3$と$z^3$は,$t^2-q t -(p/3)^3=0$の解である。$t = (q/2) \pm \sqrt{(q/2)^2+(p/3)^3}$

因数分解された右辺の第2項を$x$の2次式と考えてさらに因数分解するため,$x^2-(y+z)x +y^2 -yz + z^2 = 0$とおいて,2次方程式の解の公式を使うと,

$x=\frac{1}{2} \bigl( y + z \pm \sqrt{(y+z)^2-4(y^2+z^2-yz)} \bigr) = \frac{1}{2} \bigl( y + z \pm \sqrt{-3y^2+6yz-3z^2} \bigr)$

$\quad= \frac{1}{2} \bigl( y + z \pm (y - z ) \sqrt{3}i  \bigr) = -y \frac{-1 \mp \sqrt{3}i}{2} -z \frac{-1 \pm \sqrt{3}i}{2}$

したがって,$x^3 +p x + q =0$の解は,$\{ -y -z, \ -\omega^2 y -\omega z, \ -\omega y - \omega^2 z \}$,ただし,$\{ y , z \}= \{ \bigl( q/2 + \sqrt{(q/2)^2+(p/3)^3} \bigr)^{1/3}, \ \bigl ( q/2 - \sqrt{(q/2)^2+(p/3)^3} \bigr)^{1/3} \} $である。

0 件のコメント: