2024年2月20日火曜日

Bluesky(4)

Bluesky(3)からの続き

昨年の話になるが,Zennでshinyakatoさんが,blueskyのAPIをコマンドラインから操作するコマンド bluesky_cliを作っていた。

この機会に(どの機会?)インストールしてみる。
% brew install dart-sdk
% dart pub global activate bluesky_cli
# .zprofile に環境変数を登録
  export BLUESKY_IDENTIFIER=abcdefg
  export BLUESKY_PASSWORD=opqrstu
特に問題ない。そこで,例題を試してみよう。

(1) 投稿
% bsky post --text="Hello, Bluesky Test"
{"uri":"at://did:plc:fljdpylgk7zeyuq4sbzmucmt/app.bsky.feed.post/3klqjl3fovb2p","cid":"bafyreifmxadvjnjfh4dvo7ee2rey525s554xrwnxktktuini57lzqakuxy"}

(2) 削除
% bsky delete --uri=at://did:plc:fljdpylgk7zeyuq4sbzmucmt/app.bsky.feed.post/3klqjl3fovb2p
postしたときのat://did をそのままuriとして指定すれば良い。

(3) 画像の投稿
% bsky post --text "TEST: post text & img from bluesky_cli" --images /Users/koshi/Desktop/test.jpg
{"uri":"at://did:plc:fljdpylgk7zeyuq4sbzmucmt/app.bsky.feed.post/3klqmskp4vi2d","cid":"bafyreiacxpejbsr7wbknl6wu34qvq75ay4uewiqzhaltxms3bvfjkzqfxe"}
複数イメージならば,カンマで区切れば良いらしい。

(4) タイムラインの取得
% bsky timeline --limit=1  (1-100 default 50)
結構大きなデータがJSON形式で出てくる。そのサイズは,limitで変更できる。

(5) ユーザのプロファイル
% bsky profile --actor=koshix.bsky.social --pretty
{
    "did": "did:plc:fljdpylgk7zeyuq4sbzmucmt",
    "handle": "koshix.bsky.social",
    "displayName": "Kunio Koshigiri",
    "avatar": "https://cdn.bsky.app/img/avatar/plain/did:plc:fljdpylgk7zeyuq4sbzmucmt/bafkreibqot3zxwaxerx2cdeund3qm4stvmj35bufdipuehpfd3homixk7e@jpeg",
    "viewer": {
        "muted": false,
        "blockedBy": false
    },
    "labels": [],
    "description": "koshix.blogspot.com\ninstagram.com/koshix7\nmstdn.jp/@koshix",
    "indexedAt": "2024-01-26T00:53:03.445Z",
    "followersCount": 80,
    "followsCount": 293,
    "postsCount": 16
}
オプションのprettyはJSONデータを整形するだけの話だ。

Blueskyの登録者数はもうすぐ500万人に届きそうだ。


図:deck.blueでbluesky_cliからのテストポストをキャプチャしたもの


2024年2月19日月曜日

デブリ除去衛星


2月18日,ニュージーランドで,日本のベンチャー企業のアストロスケールが,商業デブリ除去実証衛星「ADRAS-J」を打ち上げ軌道投入に成功した

どうしてニュースでは知りたいと思う肝腎の情報を伝えてくれないのだろうか。

(1) 日本にそんな会社があったのか? → 2013年に設立され本社は東京だが,世界各地の子会社で500名がグローバルに働いている。

(2) ニュージーランドは人工衛星を打ち上げられるのか? → 2006年にニュージーランドで設立された民間企業のロケット・ラボ(現在の本社はカリフルニア州ロングビーチ)が,ニュージーランドの北島東にあるマヒア半島にロケット発射施設をもっていて,そこから打ち上げたものだ。

打ち上げに用いられたのは,小型2段式液体燃料ロケットのエレクトロンで,750万ドル(12億円)で300kgの衛星を低軌道に打ち上げられる。2017年以来31回の打ち上げを行い,28回成功している。年に6-7回の打ち上げだから,日本のH3の2倍のペースだ。

このロケットエンジンは,ニュージーランド出身の物理学者アーネスト・ラザフォードにちなんで,ラザフォードエンジンと名付けられている。推力は小さいが,技術的には高度なものが採用されている。


デブリ除去衛星ADRAS-Jは,JAXAとの契約で低軌道にあるH2Aロケットの第2段にランデブーして,比較軌道離脱のための実証データを収集する。今回はデブリ=非協力物体に接近してその様子を観測撮影するだけのようだ。

遠距離では対象の地上観測とデブリ除去衛星のGPSを組み合わせて接近する。対象が見つかった後は,可視光・赤外光・LIDARの3種類で対象を捉えることになる。


写真:ADRAS-Jのイメージ図(アストロスケールのウェブサイトから引用)

2024年2月18日日曜日

H3ロケットとお気持ち主義

2月17日9時22分過ぎ,種子島宇宙センターからH3ロケット2号機(H3・TF2)が打ち上げられ,成功裏に2個の小型副衛星(CE-SAT-IE/TIRSAT)を軌道に投入することができた(ロケット打ち上げ計画書)。

前回2023年3月7日のH3ロケット1号機では,2段目のエンジンに点火することができず,陸域観測衛星大地3号の軌道投入に失敗していた

YouTubeを見ていると,JAXAからライブ映像が配信されていた。その段階ではすでに第2段への点火が完了し,説明を聞いているところで第2段の燃焼が終了して,衛星が分離されていた。

JAXA配信中の解説で新しくわかったことは,H3ロケットが従来のH2Aのコストを半分の50億圓にしたというだけでなく,第1段のエンジンを2または3基,固体燃料ブースターの数を0,2または4基と,様々な組み合わせで,ペイロードにあわせた最適化ができるというところだった。今回のは,第1段エンジンが2基,固体燃料ブースターが2基のH3-22Sである。最大の組み合わせH3-24Wでは,6.7tの衛星を静止トランスファ軌道に投入できる。



写真:H3ロケットの1/20模型(Wikipedia「H3ロケット」から引用)

JAXAの記者会見では,記者たちのクオリティの低さが目立つ。最後の南日本新聞の女性記者が,第1段のエンジンを3基(このとき固体燃料ブースターは使わない)にするのはいつになるかを聞いていた。まだ,検証が必要なので次回ではないという説明をうまく引きだしていた。このような事前学習がされている少数例を除くと,ほとんどみんなお気持ち主義なのである。曰く「○○のときはどんなお気持ちでしたか云々」。こればっかり。平安文学からの伝統が連綿と受け継がれている。

参考:
『栄花物語』では、文学的な興趣によって感覚的に歴史を把握しており、個々の歴史事象の背後に潜む歴史の真実を描くよりも、事件をめぐって生起する人々の心情や人の世の哀感を、事実を主観的に潤色したり、虚構を用いたり、さらには、『源氏物語』の文章を模倣するなどして描いていて、作り物語的性格が濃厚であり、冷徹な目で人間を直視し、その内面へ踏み込んで描く態度が希薄である。(Wikipedia「栄花物語」から引用)

2024年2月17日土曜日

ZEN大学

大学どこへからの続き

日本記者協会の記者会見「大学どこへ」シリーズの第2回は,ドワンゴ顧問の川上量生(1968-)によるZEN大学の話だった。

ZEN大学は,現在設置認可申請中で,2025年4月に開学予定の新しいオンライン大学である。昨年の夏に,IUGC(宇宙際幾何学研究センター)が話題になったとき初めてその名前を意識した。ところが参加メンバーを見て,そのままパソコンの蓋をそっと閉じてしまい,詳細までは理解していなかった。

川上さんは,実業家として着メロやニコニコ動画を産み出し,さらにはオンラインのN高等学校を立ち上げて,いずれも成功している。その彼がどういう考えでZEN大学を立ち上げたかを直接聞くことができて参考になった。

まず,彼は教育に特に思い入れを持っているわけではなく,教育者になろうとしたこともなかった。あくまでも教育分野への参入をビジネスとして捉えている。N高校とかZEN大学というネーミングに当たっては,まさに,その実業家としてのマーケティングの観点で手あかのついていない言葉を,国内向けと海外向けにそれぞれ考えたものだとのことだ。なお,『学びあい』の西川純(1959-)もN高校やオンライン教育の重要性を速くから理解していた。


彼が考える現在の大学の問題点としては,(1) 進学率の地域格差が非常に大きいこと,最高の東京都(69.8%)と最低の鹿児島県(36.1%)では2倍近い差がある。(2) 経済格差が進学に大きな影響をしていて,家庭の所得と進学率におおきな相関がある。これに,地域から大都市へ進学して生活することによる負担が加わってくる。(3) 地方に顕著な男女の進学率格差が存在する。

これらを解決するため,これまで大学に進学していない層の人々が誰でも入学できることを目指して授業料38万円のオンライン大学を設立するというものだ。N高校の毎年の卒業生は1万人いる。その半分が進学するとしたら5000人だ。この値を当初の入学定員と想定して設置申請している。それによる収容定員は2万人となり,年間収入は76億円と見込まれる。アメリカ合衆国ではアリゾナ州立大学が最も大きなオンラインコースを設置している。8万人の通常コース学生に加えて,6万人のオンライン学生がいる。なお,放送大学のターゲットはむしろ社会人である。

ZEN大学の授業(知能情報社会学部)はすべてオンラインで提供され,実体験としてはドワンゴとともに設立に加わる日本財団のリソースを活用した様々なプログラムが用意されている。教員は約100名程度を予定していて,これに300-400人のサポートスタッフ(教育内容指導,就職指導,授業参加指導)を抱えることになる(だからそれほど儲かるわけではない)。なお,設置審で要求される就職先調査データとして,すでにN高校の卒業生を受け入れている企業を中心にアンケートしており,地方で不足しているIT/AI人材の供給元となることを想定している。

たぶん,大阪教育大学の教育協働学科も教育共創学科としてオンラインコースに重点を置きつつ,教員免許資格が取得できる付加価値をつけることで,生き残りを目指すべきだった。ZEN大学の授業は,N高校でも単位取得可能で,単位参入できそうな話だった。そのへんの履修期間を4年から広げるというモデルもおもしろい。

ZEN大学で提供される授業は,135科目である。とても少ないような気がするが,1学部なのでそんなものなのかもしれない。卒業要件単位数は124単位(1科目2単位で62科目)となっている。外国語科目は設けない。なお,教育内容については芦田宏直(1954-)さんが人間環境大学に新設される環境情報学科で目指しているものが一番興味深い。



2024年2月16日金曜日

大学どこへ

日本記者クラブの主催する記者会見で,「大学どこへ」というシリーズがあった。半分は総長クラスなのでそれほど聞く気にもならない。第8回は,東京理科大学嘱託教授の宮武久住(1957-)さんだった。共同通信の記者を25年務めた後,著作権関係の実務家教員として横浜国立大学や東京理科大学の教授として勤めた人だ。

今の大学は変わらなければならないということを主張していた。しかし変化の時代に対応できない日本の組織というのは,なにも大学に限った話ではないような気がする。改革の提案として,在学期間や入学年齢,社会人学生と地域連携など六項目があげていたが,どの立場から何を大学の問題として認識しているのかがもう一つ明確ではない。その結果,自分の体験に照らした経験主義的な感想から敷延した結論に留まってしまう。

彼は,大学教員が互いをセンセイと呼び合うことへの違和感を強く表明していた(さん付け文化を持った分野も存在するが)。大学の自治という言葉がお蔵入りして久しいが,基本的には大学が,専門職による職能団体的な自律性と同僚性を持った組織としての側面があることを十分に理解していないような気がする。

その点,第5回の大庭良介さんの話は,データに基づいて基礎研究分野の研究費では,有望とされる分野への集中投下より,分散化が望ましいことを立証していて,おもしろかった。それにもかかわらず,講演後の質問者(退職ジャーナリスト)は予算がなくなった日本では選択と集中が必要だとしつこく自己主張していた(金融資産への投資が重要だという経験を繰り返し強調しながら…orz)。

日本記者クラブの会見はどうしていつもちょっと気持ち悪いのだろうか。ロートルおじさん記者達が,自慢話を交えながら,旧来の価値観と凝固した世界観でぐだぐだと質問を続ける様はどうみても気分が良くない。どうしてジャーナリストはあんな空気を醸し出すのだろうか。まあ,じぶんだって頭の干からびたおじさん(おじいさん)であり,同様の質問をしがちなので,持って他山の石とすべし。


[1]「大学どこへ」(1) 大野英男・東北大学総長(2023.11.28)
[2]「大学どこへ」(2) ドワンゴ顧問 川上量生さん(2023.12.08)
[3]「大学どこへ」(3) 原晋・青山学院大学陸上部監督(2023.12.14)
[4]「大学どこへ」(4) 高橋裕子・津田塾大学学長(2024.01.16)
[5]「大学どこへ」(5) 大庭良介・筑波大学准教授(2024.01.22)
[6]「大学どこへ」(6) 杉山直・名古屋大学総長(2024.01.30)
[7]「大学どこへ」(7) 伊藤公平・慶應義塾長(2024.02.07)
[8]「大学どこへ」(8) 宮武久佳・東京理科大学嘱託教授(2024.02.15)

2024年2月15日木曜日

歯医者

2月14日,バレンタインデー。ようやく去年の5月から通っていた歯医者が一段落した。

右上の4番目の歯に亀裂が入っていたのは,2-3年前から気がついていたのだけれど,それがだんだん悪化してきてついに歯がそこから分裂し始めたので,あわてて近所の歯医者さんに電話したのが,去年の5月中ごろだ。

予約をとってから行った旅行先で,カレーライスを食べていたら,とうとうその歯が半分折れかかってしまった。あわてて,洗面所でうがいして,元通りに押さえ込んだ。せっかくの旅行中なのに堅いものや刺し身が食べられず,残念なことになってしまった。歯医者に電話して予約の日を変更してもらい,帰宅後すぐに向かうことになった。

近所の歯医者は,昔から二階堂の駅前で開業していた地味な西川歯科なのだが,息子さんの代になり,線路脇の空き地に移転して,「にしかわ歯科・口腔外科クリニック」として新装開店したのだ。設備はきれいだし,こども向けのギミックも満載で(二階堂駅のホームから楽しそうな絵が描かれたはいしゃさんがみえるのだ),患者さんでにぎわっている。

治療は2-3回で終了したのだが,その後の,歯茎の検査とゆっくりと進められる歯石除去で半年以上かかってしまうことになった。さらに,今後は約3ヶ月に1回のサブスクリプションまでついてくることになった。まあ,行かなければ終了するのだけれど。歯をやられてものを食べられなくなるのが心配なので,とりあえず通うことにしょうか。


歯医者に通うのは30年ぶりだった。前回は西川歯科を敬遠して,近鉄郡山駅前の伊藤小児歯科にお世話になった。当時は歯周病が進行して下の歯を2本抜いてブリッジを入れることになってしまったのだ。前々回は,学生のときで,阪急宝塚線蛍池駅前の田中歯科である。これは,こどものときの虫歯治療のアマルガムが脱落したためであり,簡単な治療だけで終った。

最初の歯医者は,小学校4-6年ごろかな。学校の歯科検査で虫歯がたくさん見つかって,寺町2丁目のバス停前の白石歯科に何年か通った。そのとき初めてアマルガムという水銀の合金を虫歯の詰め物に使うことを学んだ。アマルガムをこねる作業も見ていたような気がする。こどものときから甘いお菓子ばかり食べていたのがよくない。もらったお菓子を引き出しにたくさん溜めながら,ちびちびと食べ続けていたのである。ろくな子供ではない。


写真:にしかわ歯科の受付で配布されたバレンタインチョコ


2024年2月14日水曜日

曾根崎心中

 文楽の曾根崎心中は何度か観ているが,歌舞伎では初めてだった。

生玉社前の段。油屋九平次とその取り巻きらにいじめられる手代徳兵衛の場面がある。冷たい視線を送る群衆がフリーズしているのが,妙に現代劇のような演出になっている。いいようなわるいような。尾上右近の徳兵衛も,中村壱太郎のお初もセリフがやや聞き取りにくいのでちょっともやもやする。

天満屋の段。徳兵衛の叔父の醤油屋の平野屋久右衛門が登場する。これは文楽にはなかった。久右衛門は,徳兵衛がお初に騙されていると思い,その徳兵衛を諌めるために来たのだ。その後,天満屋の主人吉兵衛がお初に説教するところも文楽にはなかったものだ。九平次が現れるのはそのままだけれど,吉兵衛とからんで揉める部分が追加されている。

そして,一番大きな違いは,九平次の悪事が久右衛門に露見するという話が追加されていることだ。お初と徳兵衛が暗闇の中,天満屋を脱出した後,油屋九平次の手代の市兵衛が急用でやってきた。九平次が無くしたと嘘の届け出をして隠していた印判を役人に持っていってしまい,嘘がばれそうになっているとあわてて九平次に知らせに来たのだ。その話を久右衛門が聞いて,天満屋主人吉兵衛にも伝わってしまう。

天神森の段。ここは,ほぼ竹本の語りで進んでいくので,違いはないような気がする。
この世の名残り」夜も名残り。
死に行く身を」たとふれば」あだしが原の」道の霜。
一足づつに」消えて行く」夢の夢こそ」哀れなれ。
あれ数ふれば」暁の」七つの時が」六つ鳴りて」残る一つが」今生の」鐘の響きの」聞き納め。
寂滅為楽と」響くなり。
鐘ばかりかは」草も木も」空も名残りと」見上ぐれば」雲心なき」水の面」北斗は冴えて」影うつる」星の妹背の」天の河。
梅田の橋を」鵲の」橋と契りて」いつまでも」われとそなたは」女夫星。
必ず添ふと」すがり寄り」二人がなかに」降る涙」河の水嵩も」勝るべし。

竹本住太夫が,近松は五七調からズレるのがあまり好きじゃないといっていたが, この冒頭の部分だとずれているのは一箇所だけだ。


写真:お初天神(露天神社)のお初徳兵衛の像(Wikipediaから引用)

2024年2月13日火曜日

柿の葉寿司

新しくなったGeminiに「美味しい柿の葉寿司のお店を紹介してください。」と尋ねてみた。

質問者の位置情報を勝手に把握した上で,天理市の美味しい柿の葉寿司のお店を紹介してくれたが,その結果は極めて妥当なものでした。いいようなわるいような。

天理市周辺で美味しい柿の葉寿司のお店をいくつかご紹介します。

柿の葉ずし平宗 便利館
住所:日本、〒632-0097 奈良県天理市中町217−2
営業時間:9時30分~19時00分
評価:4.2
口コミ:Googleマップ 
ゐざさ 大和吉野 柿の葉寿司 田原本店
住所:日本、〒636-0226 奈良県磯城郡田原本町唐古80−5
営業時間:9時30分~18時00分
評価:4
口コミ:Googleマップ 
柿の葉ずしのみよし野 奈良コープ産業
住所:日本、〒632-0082 奈良県天理市荒蒔町96−1
営業時間:8時30分~17時00分
評価:0
口コミ:Googleマップ 
柿の葉ずしヤマト 天理店
住所:日本、〒632-0046 奈良県天理市三昧田町90−1
営業時間:8時00分~19時00分
評価:3.9
口コミ:Googleマップ 
柿の葉寿司本舗たなか 西和店
住所:日本、〒639-0205 奈良県北葛城郡上牧町下牧2丁目8−85
営業時間:8時30分~19時00分
評価:3.9
口コミ:Googleマップ 
これらのお店は、いずれもGoogleマップ上で高評価を得ています。また、営業時間も長いので、お好みの時間に訪れることができます。

ぜひ、天理市で美味しい柿の葉寿司を味わってみてください。 


図:GeminiがGoogle Mapを呼び出して表示した近辺の柿の葉寿司ベスト5

2024年2月12日月曜日

スマートキャップ

スマートへルメットからの続き

神戸大学の塚本昌彦先生ではないけれど,コンピュータはウェラブルへの道を進んでいる。Appleを例にとれば,MacBookから,iPhone・iPad経由して。Apple Watchや Apple Vision Pro(空間コンピューティング)と来ている。

その本命が電脳コイルのような眼鏡型なのかどうなのかはまだわからない。ただ,ゴーグルタイプではないような気がする。とはいってもリスト型もちょっと違う。視聴覚へのインターフェースを考えれば,頭の周辺で常時身に付けるものになるので,帽子か眼鏡の2択になる。

GoogleのGeminiに「ほとんどの人が常時身に付けることになるAIデバイス(ウェラブルコンピュータ)の形態としてはどんなものが考えられるでしょうか。ゴーグル型,メガネ型,帽子型,腕時計型,それぞれの長所や短所を整理した上で有望な順に並べてください。」と尋ねたところ,1位:腕時計型,2位:メガネ型,3位:ゴーグル型,4位:帽子型ということだ。


図:DiffusionBeeでは適当なイメージが出てこない。


重ねて聞いてみた。「帽子型は,キャップの鍔の部分に格納されている表示用パネルを降ろすことによって,XR機能を持たせることができますし,帽子の周囲に光学センサー(カメラ)を配置することで,視線+手指入力も可能になるのですが。」

Geminiが空気を読んだ結果がこれだ。自分の考えていたことをほぼ説明してくれている。
帽子型ウェアラブルコンピュータは、キャップの鍔に格納された表示用パネルや帽子の周囲に配置された光学センサー(カメラ)を活用することで、XR機能や視線+手指入力など、ユニークな機能を実現できる可能性があります。以下、詳細な考察と、具体的な活用例をいくつかご紹介します。
 1. XR機能
  鍔部分に格納された有機ELパネルなどを利用し、AR/VRコンテンツを表示可能
  透過型ディスプレイを用いることで、現実世界の情報とシームレスに融合
  バイザーを降ろすことで、没入感の高いVR体験を実現
  頭部の動きに追従するヘッドトラッキング機能を搭載することで、より自然な操作感を実現

・具体的な活用例
  ナビゲーション:目的地までの道順を視覚的に表示
  教育:歴史上の人物や建造物を3Dで再現
  エンターテイメント:映画やゲームをより臨場感豊かに体験
  情報表示:ニュースや天気予報などを常に視界に表示

 2. 視線+手指入力
  帽子周囲に配置されたカメラで視線を捕捉
  指先ジェスチャーと組み合わせることで、直感的な操作を実現
  ハンズフリー操作により、作業効率を向上

・具体的な活用例
  スマートフォン操作:画面を見ずに電話をかけたり、メッセージを送ったり
  音楽再生:曲の再生、停止、音量調整などをジェスチャーで行う
  ゲーム操作:視線でキャラクターを操作し、指先で攻撃を行う

 3. その他の機能
  マイクを搭載し、音声認識による操作も可能
  太陽光発電パネルを搭載し、バッテリーの充電を可能
  頭部の温度や湿度を測定し、健康管理に役立てる

 4. 課題
  デザインと機能性の両立
  軽量化とバッテリー持続時間の向上
  プライバシー保護

 5. 将来展望
 技術の発展により、帽子型ウェアラブルコンピュータは、より小型化、軽量化、高機能化が進み、ファッションアイテムとしても広く普及していく可能性があります。また、医療や介護、教育など、様々な分野での活用が期待されています。

 6. まとめ
  帽子型ウェアラブルコンピュータは、XR機能や視線+手指入力など、独特な機能を備えることで、従来のウェアラブルデバイスとは異なる新しいユーザー体験を提供することができます。課題を克服し、技術開発が進めば、将来的に人々の生活に大きな影響を与える革新的なデバイスとなる可能性を秘めています。

2024年2月11日日曜日

プール

泉野小学校にはプールがなかった。

戦後の引き揚げ者が平和町に多く住むようになって,十一屋小学校の校区の人口が急増し,その分校として設置されたのが泉野小学校である。昭和34年(1959年)に独立した小学校として創立された。自分が入学したのは昭和35年(1960年)なので,第2期生というわけだ。

歴史のある十一屋小学校にはプールがあったのではないか。体育の水泳の授業は近くの野田中学校や,歩いて30分ほどの市営グラウンドに併設されている市営プールに半日がかりで行くことになる。

小学校1年のころには父親の会社の海水浴で千里浜に行ってばしゃばしゃしていたり,母親の実家の滑川は海のすぐ近くだったりしたのだけれど,小学校のころはほとんど泳げなかった。そんなわけで,例の勉強も良くできる大杉君が50メートルプールの短辺をバタフライで力強く泳いでいるのを指をくわえて見ているような子供だった。

その後の経緯は,金沢泉丘高等学校のプールで書いていた。


写真:思い出の金沢市営総合プール

2024年2月10日土曜日

Bluesky(3)

Bluesky(2)からの続き 

Blueskyの招待コードをもらって登録したのはかれこれ9ヶ月以上前のこと。2月6日にようやく,Blueskyは招待制から公開登録制に移行した。これにより,300万人だった登録者は,1-2日のうちに400万人を越えるに至った。 


図:BlueSkyの登録者の相転移(Jaz統計[5]から引用)

2024年2月における自分のSNSの現状を復習してみた。
SNS名   URL         フォロー中:フォロワ 登録日
--------------------------------------------------------------------------------------------------
X(https://twitter.com/koshix/)           934:971  2008.8-
Facebook(https://www.facebook.com/koshix/)  396:396  2009.5-
Mastodon(https://mstdn.jp/@koshix)        280:328  2017.4-
Instagram (https://www.instagram.com/koshix7/)   352:359  2019.10-
Bluesky (koshix.bsky.social)         26:  57  2023.5-
Threads (https://www.threads.net/@koshix7)    446:147  2023.7-
--------------------------------------------------------------------------------------------------

Instagramは自分の写真の記録用だし,Facebookは友人知人の様子を知るためのものだから除く。それでも4つも残っている。最近評判が悪いX(旧Twitter),Mastodon,Bluesky,Threadsと4つのSNSを巡回するとなると,面倒で困る。どれかに集約するならば,Blueskyかな。Mastodonを予備として。しかし,問題は貴重な情報源の何人かがまだXに残ったままになっていることだ。いずれにせよ,情報を発信する頻度はかなり減ってしまった。


2024年2月9日金曜日

直角

理科クラブと算数クラブからの続き

小学校4年の算数の時間のことだ。折り紙を2回折ると直角をつくることができるという話になった。そこで,先生がみんなに尋ねた。折り方によって直角はいくつくらい作ることができるでしょう。さっそく折り紙をもちながらクラスでわいわいと議論がはじまった。

クラスの中でもよくできて運動も得意で発言力のあった中田君が3000くらいかなあといった。それに賛同する子が多かった。選挙で自民党に票が集まるのと同じ原理だ。強いものが正義であり真理なのである。これに対して,転校生でちょっとみんなからはずれていた眼鏡の松村さんと自分が,それはおかしい,ほんの少しでも折り線をずらせば可能なので,無数にできるはずだと主張した。

教訓1:真理はかならずしも多数決では決まらない
教訓2:力(権威)が大衆の正義になることは多い

自分が苦手だった沢崎先生はどうやってその結果を集約したのだろうか。そのあたりははっきり覚えていない。


写真:おりがみで直角をつくる方法


2024年2月8日木曜日

理科クラブと算数クラブ

中国の小学生の数学からの続き

1964年,泉野小学校では,5年生になるとクラブ活動が始まった。モーターを使って自動車をつくる工作クラブもおもしろそうだったが,理科クラブのほうに入った。初回は担当の先生がこどもの名前を確認していくのだけれど,腰切と板書されて話がなかなか遠かった。上級生の活動発表では,水酸化ナトリウム水溶液で煮出した木の葉から葉脈標本を作るというのが印象的だった。

ともだちと数人のグループで何をテーマにしようかと相談した。その結果,ビーカーに入れた食塩水の濃度をかえたものをいくつか用意して,おたまじゃくしがどこまで大丈夫かを確かめようというとんでもない実験をすることになった。このあたり,先生の指導はほとんどいきとどいていない。結局食塩水の濃度計算だけ上達することになった。おたまじゃくしは結構の濃度まで耐えていたかもしれない。

さて,6年生になると学年のクラス数がこれまでの3組から4組に増えた。そこまで児童の数は増えていなかったはずなのだがどうしてだろう。5年2組の南毅先生(社会)から,6年4組の前多光子先生(理科)に担任は変わった。隣の6年3組には中薮先生(算数)が新しく着任した。どうやらかなり厳しく怖い先生だという噂がすぐに伝わってきた。

ある日,その中薮先生が新しく算数クラブを作ることになったというアナウンスがあった。思わずハイハイハイ,そのクラブに入りますと大きな声で訴えた。算数クラブには10人あまりのこどもたちが集まっただろうか。毎週一回のクラブの時間はとても刺激的で楽しかった。

ただ,覚えているのは,一筆書き三角数と四角数,図形の面積のパラドックスくらいだ。一筆書きでは,奇数点が0個か2個のときだけ可能だということを学んだ。三角数の規則性について説明があった後で,四角数はどうなるだろうかという設問に,わかったと思って挙手して答えたけれど,どうもうまくことばで説明することができなかった。中薮先生は,算数クラブではたいへんやさしく指導してくれた。


図:三角数と四角数(イミダスからの引用)

(注)大杉君は,中薮先生のクラスだったが,6年3組の算数の時間には,台形の対角線を結んでできた左右側の三角形の面積が等しいことを説明させるという授業が展開されていたことを教えてくれた。

2024年2月7日水曜日

Apple Vision Pro(2)

Apple Vision Pro(1)からの続き

2月2日にAppleのVision Proが発売になって,数日が経過した。アメリカ国内だけの限定発売であり,日本語にもまだ対応していないが,YouTubeでは日本人によるファーストインプレッションも沢山あがってきた。

最低の256GBモデルでも3499ドル(52万円),多少オプションを付ければ60万円のシステムなので,おいそれとは手が出ない(昔の為替レートなら30万円なのだけど)。その上現地までの航空費や宿泊費を含めると,仕事関係の人か,収益化につながるYouTuberかよほどのアップルフリークでないと参戦していない(米国の連絡先/配送先住所と米国のAppleIDが必要)。

なおかつ,アップル製品への関心が高くてテクノロジーに関する経験の深い人々による印象なので,割り引いておかないと本当のところはなかなかわからないかもしれない。それでも,その評判はなかなかよいものだった。

視野角は左右90度で上下も狭いが,外部カメラからとりこまれる環境映像が自然にパススルーされている。そこに非常に高精細なVision OSのUI画面が重ねられ,丁寧に個人向けに調整された視覚環境は申し分ないようだ。ユーザインタフェースも視線と指による(音声は英語がひつようなのであまりレビューされていない)もので,まったく違和感なしに使えている。自分が2008年8月に最初に手にしたiPhoneのタッチ画面を楽々と使いこなせたのと同じようだ。

手元にMacbookがあればその画面を表示できて,マウスコントロールやデータのやりとりがVision OS固有アプリとの間で簡単にできるところも素晴らしい。

外付けになるバッテリは妥協できそうだが,問題は,650gの重さのようだ。あと,人によっては眼がつかれるとのこと。ブラウザのYouTubeは問題なく視聴できるらしく,Apple のVisionOS ネイティブアプリもあって,iOSアプリも利用できるらしいからほとんど問題はなさそうだ。

ただ,空間コンピューティングを実現する新しいディスプレイとコンピュータだと考えた場合は,macOSのように,Xcode環境はターミナルが動いて,JuliaとMathematicaまで動かなければちょっとためらわれる。もしそれが可能になれば,いまのMacBook Airとディスプレイを完全におきかえるものとなる(スペック上はM1 MacBook Airを越えられる)。ただし,G5とGPSが使えなければ,モバイル端末としてのiPhone/iPadを代替するまでにはならない。



写真:店頭のApple Vision Pro (Wikipediaから引用)

[4]Apple Vision Pro - できること全て(大川優介)

2024年2月6日火曜日

中国の小学生の数学

中国の小学生が解いている数学の問題という触れ込みで次の面積を求める問いがあった。

図1:4分円と半円の交わる部分の面積を求める

小学生にも出来るはずだということで,いろいろ考えたけれど,どうしても解けない。いや,$ \tan^{-1} \alpha = 1/2, \tan^{-1}\beta = 2$によって,図の2つの角度さえ求めてよいならば,扇型AOEGの面積が $S_1=\alpha a^2$,扇型DOEGの面積が$S_2=\beta (a/2)^2$,そして四角形OAGDの面積が,$S_3=a^2/2$であることを用いて,求める面積は $S = S_1+S_2-S_3$となる。

あるいは,解析幾何学を使ってよいのならば,2つの円の式の交点からG$=(4a/5, 2a/5)$となり,面積は積分を使って,$S=\displaystyle \int_0^{4a/5} \Bigl( \sqrt{(a/2)^2-(x-a/2)^2}-a+\sqrt{a^2-x^2} \Bigr)\  dx$となる。

いずれにせよ,答えは,正方形OABCの一辺を$a=4$として,$S \approx 3.847$ である。
結局,中国の小学生はどうやってこの問題を解いているのだろうか


小学生のとき,似たような問題で長いこと未解決でクラスのみんなであれこれ議論したものがあった。それは図2右のようなもので,正方形の中の四つの四分円の交わる領域の面積を求めるものだ。図2左は授業でもよく出てくる問題であり,これならみんな解ける。

図2:小学校のときの未解決問題(右図)

あるとき,塾に通っていた友人たちが,塾の先生から答えを聞いてきて披露したことがあった。それはだめでしょう。せっかくみんなで自分たちで答えをだそうとがんばっていたのに。その解法には正三角形の面積を求める過程がふくまれていて平方根が登場する。小学生には無理な問題だったのだ。

いや,じつはそれほど無理でもない。小学校5,6年のときだろうか,学校で一番頭の良いことで有名だった大杉君というのが,平方根の筆算による計算法(開平法をどこかで学んできて,みんなに教えてくれたことがあった。なるほど,そういうことかと計算できるようになった友達は多い。たぶん,ピタゴラスの定理もどこかで聞きかじっていたかもしれないので,実はもう少しで解けるあたりまでの知識は蓄積していたはずなのだ。

2024年2月5日月曜日

三角分布と変数変換

一様分布と変数変換からの続き

2つの確率変数の三角分布があったとき,これを変数変換したときの確率分布を考える。

与える分布は,$p(x)=2x\ \theta(x) \theta(1-x),\ q(y) = 2y\ \theta(y) \theta(1-y)\ $とする。したがって,$0 \le x \le 1,\ 0 \le y \le 1 \ $を満足する。このとき,$\displaystyle \int_0^1 \int_0^1 p(x) q(y)\ dx dy =1$
これは,$\displaystyle \int_0^1 dx \int_0^x dy\ p(x) q(y) + \int_0^1 dx \int_x^1 dy\ p(x) q(y) =1$とも書ける。


(1)$\underline{X = x+y,\ Y = x-y \quad (0 \le X \le 2,\ -1 \le Y \le 1)\ }$の場合
このとき,$x = (X+Y)/2, \ y=(X-Y)/2, \ J(X,Y)=\frac{1}{2}\ $
$p(x) q(y) = 4 p q = (X+Y)(X-Y) = X^2-Y^2$

積分領域は, $-X \le Y \le 2-X$ かつ $X \le Y \le X-2$
$f(X,Y)\ $の期待値は,$\langle f \rangle = \int_0^1 dX \int_{-X}^{X} f(X,Y) \frac{X^2-Y^2}{2} dY + \int_1^2 dX \int_{X-2}^{2-X} f(X,Y)  \frac{X^2-Y^2}{2} dY$

(1-1) $\langle 1 \rangle =  \int_0^1 dX \Big\lbrack X^2 Y - \frac{Y^3}{3} \Big\rbrack_{0}^{X} + \int_1^2 dX \Big\lbrack X^2 Y - \frac{Y^3}{3} \Big\rbrack_{0}^{2-X} $
$\quad = \int_0^1 \frac{2}{3}X^3 dX + \int_1^2 \frac{2}{3}(2-X)(X^2+2X-2) dX $
$\quad =  \Big\lbrack  \frac{1}{6}X^4 \Big\rbrack_0^1 +\Big\lbrack  -\frac{X^4}{6} + 2X^2-\frac{8}{3}X \Big\rbrack_1^2 = 1$

(1-2) $\langle |Y| \rangle =  \int_0^1 dX \int_0^X (X^2Y-Y^3) dY + \int_1^2 dX \int_0^{2-X}(X^2Y-Y^3) dY$
$\quad = \int_0^1 \Bigl(\frac{X^4}{2}-\frac{X^4}{4} \Bigr) dX +  \int_1^2 \Bigl\{ \frac{X^2(2-X)^2}{2} - \frac{(2-X)^4}{4} \Bigr\} dX $
$\quad =  \Big\lbrack \frac{1}{20}X^5 \Big\rbrack_0^1 +   \Big\lbrack  \frac{1}{20}X^5 -\frac{4}{3}X^3 + 4X^2 -4X  \Big\rbrack_1^2 = \dfrac{4}{15} \ $


(2)$\underline{X = x+y,\ Y = xy \quad (0 \le X \le 2,\ 0 \le Y \le 1)\ }$の場合
このとき,$x = (X \pm \sqrt{X^2-4Y})/2, \ y=(X \mp \sqrt{X^2-4Y} )/2, \ J(X,Y)=\frac{1}{\sqrt{X^2-4Y}}$
$p(x) q(y) = 4 p q = (X \pm \sqrt{X^2-4Y})(X \mp \sqrt{X^2-4Y} ) = 4Y$

積分領域は, $0 \le Y$ かつ $X-1 \le Y \le X^2/4$
$f(X,Y)\ $の期待値は,$x>y$と$y>x$の場合をそれぞれ加えることで,
$\langle f \rangle = 2 \int_0^1 dX \int_0^{X^2/4} f(X,Y) \frac{4Y}{\sqrt{X^2-4Y}} dY + 2 \int_1^2 dX \int_{X-1}^{X^2/4} f(X,Y) \frac{4Y}{\sqrt{X^2-4Y}} dY$

(2-1) $\langle 1 \rangle = 2 \int_0^1 dX \int_0^{X^2/4} \frac{4Y}{\sqrt{X^2-4Y}} dY + 2 \int_1^2 dX \int_{X-1}^{X^2/4}  \frac{4Y}{\sqrt{X^2-4Y}} dY$
$\quad = 2 \int_0^1 dX \Big\lbrack -\frac{X^2+2Y}{3} \sqrt{X^2-4Y}  \Big\rbrack_0^{X^2/4} + 2 \int_1^2 dX  \Big\lbrack -\frac{X^2+2Y}{3} \sqrt{X^2-4Y} \Big\rbrack_{X-1}^{X^2/4}$
$\quad = \int_0^1 \frac{2 }{3}X^3 dX + \int_1^2 \frac{2}{3}(2-X)(x^2+2X-2) dX$
$\quad =  \Big\lbrack \frac{1}{6}X^4 \Big\rbrack_0^1 +  \Big\lbrack  -\frac{1}{6}X^4+ 2 X^2-\frac{8}{3}X  \Big\rbrack_1^2= 1$

(2-2) $\langle \sqrt{X^2-4Y} \rangle = 2 \int_0^1 dX \int_0^{X^2/4}  4Y dY + 2 \int_1^2 dX \int_{X-1}^{X^2/4} 4Y dY$
$\quad = 2 \int_0^1 dX \Big\lbrack 2Y^2 \Big\rbrack_0^{X^2/4} + 2 \int_1^2 dX  \Big\lbrack 2Y^2 \Big\rbrack_{X-1}^{X^2/4}$
$\quad = \int_0^1 \frac{1}{4}X^4 dX + \int_1^2 \Bigl\{ \frac{1}{4}X^4-4(X-1)^2 \Bigr\} dX  $
$\quad = \Big\lbrack \frac{1}{20}X^5 \Big\rbrack_0^2 +  \Big\lbrack -\frac{4}{3}(X-1)^3  \Big\rbrack_1^2 = \dfrac{4}{15}$ 

2024年2月4日日曜日

一様分布と変数変換

確率変数の積からの続き

2つの確率変数の一様分布があったとき,これを変数変換したときの確率分布を考える。

与える分布は,$p(x)=\theta(x) \theta(1-x),\ q(y) = \theta(y) \theta(1-y)\ $とする。したがって,$0 \le x \le 1,\ 0 \le y \le 1 \ $を満足する。このとき,$\displaystyle \int_0^1 \int_0^1 p(x) q(y)\ dx dy =1$
これは,$\displaystyle \int_0^1 dx \int_0^x dy\ p(x) q(y) + \int_0^1 dx \int_x^1 dy\ p(x) q(y) =1$とも書ける。


(1)$\underline{X = x+y,\ Y = x-y \quad (0 \le X \le 2,\ -1 \le Y \le 1)\ }$の場合
このとき,$x = (X+Y)/2, \ y=(X-Y)/2, \ J(X,Y)=\frac{1}{2}\ $

積分領域は, $-X \le Y \le 2-X$ かつ $X \le Y \le X-2$
$f(X,Y)\ $の期待値は,$\langle f \rangle = \int_0^1 dX \int_{-X}^{X} f(X,Y) J(X,Y) dY + \int_1^2 dX \int_{X-2}^{2-X} f(X,Y) J(X,Y) dY$

(1-1) $\langle 1 \rangle =  \int_0^1 dX \Big\lbrack \frac{Y}{2}\Big\rbrack_{-X}^{X} + \int_1^2 dX \Big\lbrack \frac{Y}{2}\Big\rbrack_{X-2}^{2-X} = \int_0^1 X dX + \int_1^2 (2-X) dX = 1$

(1-2) $\langle |Y| \rangle =  \int_0^1 dX \Big\lbrack \frac{Y^2}{2} \Big\rbrack_0^{X} + \int_1^2 dX \Big\lbrack \frac{Y^2}{2} \Big\rbrack_0^{2-X} = \int_0^1 \frac{X^2}{2}dX +  \int_1^2 \frac{(2-X)^2}{2} dX $
$\quad =  \Big\lbrack \frac{X^3}{6} \Big\rbrack_0^1 +   \Big\lbrack \frac{(X-2)^3}{6} \Big\rbrack_1^2 = \dfrac{1}{3} \ $


(2)$\underline{X = x+y,\ Y = xy \quad (0 \le X \le 2,\ 0 \le Y \le 1)\ }$の場合
このとき,$x = (X \pm \sqrt{X^2-4Y})/2, \ y=(X \mp \sqrt{X^2-4Y} )/2, \ J(X,Y)=\frac{1}{\sqrt{X^2-4Y}}$

積分領域は, $0 \le Y$ かつ $X-1 \le Y \le X^2/4$
$f(X,Y)\ $の期待値は,$x>y$と$y>x$の場合をそれぞれ加えることで,
$\langle f \rangle = 2 \int_0^1 dX \int_0^{X^2/4} f(X,Y) J(X,Y) dY + 2 \int_1^2 dX \int_{X-1}^{X^2/4} f(X,Y) J(X,Y) dY$

(2-1) $\langle 1 \rangle = 2 \int_0^1 dX \int_0^{X^2/4} \frac{1}{\sqrt{X^2-4Y}} dY + 2 \int_1^2 dX \int_{X-1}^{X^2/4}  \frac{1}{\sqrt{X^2-4Y}} dY$
$\quad = 2 \int_0^1 dX \Big\lbrack -\frac{1}{2} \sqrt{X^2-4Y}  \Big\rbrack_0^{X^2/4} + 2 \int_1^2 dX  \Big\lbrack -\frac{1}{2} \sqrt{X^2-4Y} \Big\rbrack_{X-1}^{X^2/4}$
$\quad = \int_0^1 X dX + \int_1^2 (X-1) dX  = 1$

(2-2) $\langle \sqrt{X^2-4Y} \rangle = 2 \int_0^1 dX \int_0^{X^2/4}  dY + 2 \int_1^2 dX \int_{X-1}^{X^2/4}  dY$
$\quad = 2 \int_0^1 dX \Big\lbrack Y \Big\rbrack_0^{X^2/4} + 2 \int_1^2 dX  \Big\lbrack Y \Big\rbrack_{X-1}^{X^2/4}$
$\quad = \int_0^1 \frac{X^2}{2} dX + \int_1^2 (\frac{X^2}{2}-2X + 2) dX  = \Big\lbrack \frac{X^3}{6} \Big\rbrack_0^2 +  \Big\lbrack -X^2 + 2X \Big\rbrack_1^2 = \dfrac{1}{3}$ 

2024年2月3日土曜日

円の長さ

正方形の長さからの続き

ある図形の大きさの指標となる長さを,図形内に一様分布する2点の距離の期待値として定義することで,都道府県の形や大きさを,面積や周長だけでなく"長さ"で特徴づけるという話をしている。

練習として,正方形内のランダムな2点の距離の期待値$\ d \ $を計算できることを確認した。次にトライするのが円であるが,ネットで検索しても生成AIにきいてもあまり適切な解答が得られない。一番近いのが,Yahoo知恵袋の「半径1の円内の任意の2点間の距離の期待値は?」だ。これも結局解析的な答えがでなくて,数値計算で $\ d=0.9054\ $という値を出している。

$d = \int_0^{2\pi} (\frac{1}{2\pi}) d\theta_1 \int_0^{2\pi} ( \frac{1}{2\pi}) d\theta_2 \int_0^1 (2 r_1) dr_1 \int_0^1 (2 r_2) dr_2 \sqrt{r_1^2+r_2^2-2r_1 r_2 \cos(\theta_1-\theta_2) }$
ただし,各積分の()内がそれぞれの変数に対応する確率密度関数,$p(\theta_1)$,$ p(\theta_2)$,$q(r_1)$, $q(r_2)\ $であり,それぞれの変数で積分すると1になるように規格化されている。

これを計算するためには,与えられた4変数の確率分布関数から変数変換によって,積分可能な形に持ち込む必要があるが,なかなか難渋する。しかたがないので,とりあえずJuliaとMathematicaで数値計算してみる。
a=zeros(Float64,1000001,2)

function ju(a,n)
  k = 0
  for i in 1:n
      x = 2*rand()-1
      y = 2*rand()-1
      if x^2+y^2 < 1.0
        k = k + 1
        a[k,1] = x
        a[k,2] = y
      end
  end 
  return k
end

function su(a,n)
  m = div(n,4)*3
  sum = 0
  for i = 1:m
    for j = i:m
      sum = sum + sqrt((a[i,1]-a[j,1])^2+(a[i,2]-a[j,2])^2)
    end
  end
  return sum/binomial(m,2)
end

n=300000

@time su(a,n)
235821
24.223278 seconds (7.18 k allocations: 500.875 KiB, 0.07% compilation time)
0.9055523

生成AIの2つが答えた,$\dfrac{4}{\pi}=1.27324$はたぶん誤っていたということだろう。

解析的に計算できないかと思うのだが,角度積分が完全楕円積分の形になるので,これをさらに積分するのはちょっと難しそうだった。角度積分を後回しにしてもさらに面倒か。Mathematicaに投げてみたが,忍耐可能時間内には答えが出なかった。

2024年2月2日金曜日

確率変数の積

将来必要になりそうな,確率変数の積の確率分布関数を求める。

2つの確率変数$X$と$Y$が確率密度分布関数$p(x),\ q(y)$に対応している。このとき,確率変数$Z=X*Y$はどのような確率分布をするか,再び,緑川章一さんのノートで勉強する。

確率変数 $Z=X*Y$の確率分布関数を $r(z)$とすると,$r(z) = \int_0^1  \int_0^1  p(x) q(y) \delta(z- x*y) \ dx\ dy =  \int_{0}^{1} \dfrac{1}{|y|} p(z/y) q(y) \ dy $となる。ここでデルタ関数の性質,$\delta(a x) = \delta(x)/|a|$を用いた。この$\ z \ $の範囲は,$ 0 < z < \infty$ である

(1)$X$と$Y$が,それぞれ一様分布,$p(x)  =  1 \ (0 \le x \le 1)$ ,$q(y)  =  1 \ (0 \le y \le 1)$を満足している場合。ここで,$0< z/y<1\ $より,$z<y<1$である。したがって,

$r(z) = \int_z^1 \frac{1}{y} 1*1 \ dy= -\log z$

(2)$X$と$Y$が,それぞれ三角分布,$p(x) = 2x \ (0 \le x \le 1)$,$q(y) = 2y \ (0 \le y \le 1)$をしている場合(単位円内の点の一様分布の動径変数)。

$r(z) = \int_z^1 \dfrac{1}{y} \dfrac{2z}{y} (2y)\ dy = \int_z^1 \dfrac{4z}{y} \ dy = - 4z \log z$

うーん,あんまりうれしくないかもしれない。後々$\log$の計算が残るので。

2024年2月1日木曜日

曖昧な弱者

1月30日の日経朝刊の経済教室の伊藤昌亮(1961-)の記事が目を引いた。

「弱さ」を競い合う社会 「曖昧な弱者」存在認識をという表題である。



図:今日の左右対立の構造(伊藤昌亮 日本経済新聞から引用して改変)

日本経済新聞に掲載された伊藤の図を引用するが,自分の理解を深めるために若干修正している。一番気になっているのは,マスメディアは政治経済エリート側に包摂されてしまっているのではないかということ,リベラル・保守,左派・右派の従来の定義とスコープが機能しているのかということであり,それぞれ?を付けている。

オカケンさん[1]の助けを借りて,伊藤昌亮の論説を解読すると次のようになる。

左派やリベラル派にとって明白な弱者とは,搾取された労働者や貧困化の女性・若者であり,アイデンティティポリティックスの対象とされる,在日外国人,被差別部落,沖縄・アイヌ,障害者,LGBTQなどである。文化エリートはこれらとの連帯を強く主張する。

一方で,OECD諸国の中でも著しく「小さい」日本政府(OECD諸国最低レベルの社会福祉費と教育費)は,その福祉・教育機能を,企業や家庭に投げてきたが,グローバリズムの嵐の中でそのシステムは崩壊し,いわゆる中流階級は消滅して,激しい二極分化が生じた。

この結果,大量に生じているのが,従来の明白な弱者カテゴリーでは十分にすくい上げられない,曖昧な弱者である。社会的にはっきりと認知・共感されない彼らは,そのフラストレーションを,「あいつらだけ認知されるのはずるい(在日特権言説,生活保護・高齢者バッシング)」と明白な弱者に対して牙をむく。

それは,アメリカのトランプ現象やヨーロッパの移民排斥右翼の台頭とまさに軌を一にする動きになっている。こうして,ネットワーク上には,政治的な意図を持ってDAPPIなどが着火すれば容易に燃え上がるネトウヨ的な素地が醸成されてきたのだ。

ただ,これらに保守・右派というレッテルを貼ってよいかどうかは疑問だ。たしかに,リベラル勢力に対抗するためだけに,宗教右派は明白な弱者たたきを繰り返しているが,日本維新の会に代表されるようなネオリベラリズムは保守とはいえない。むしろ,既存秩序を崩壊させる中で,新しい権益を掠め取ろうという作戦に立っているので話は複雑だ。