2022年3月12日土曜日

デジタル地域通貨

 天理市がデジタル地域通貨を始めるというニュース。

天理市の並河健市長は若くて頭がいいので,新しいことにいろいろと取り組んでいる。自民党に近いし,師匠が北岡伸一なのだけれど,これまでの市長としての発言内容にはおおむね好感が持てる。昨年のコロナワクチン接種開始時の対応もスムーズで,奈良県の他市町村と比べても接種率が高い状態をずっと維持していた。最近では,PCR検査体制も整えてた。

高市早苗に対抗して2012年に日本維新の会から衆議院選挙に出馬したが,その後離党している。そんなこともあるので,市立図書館をカルチュア・コンビニエンス・クラブ(TSUTAYA)に売り渡さないかだけが心配だ。

さて,そのデジタル地域通貨だが,朝日新聞によると次のようなものらしい。

第1段階:コロナ禍で低迷する地元の消費喚起で市内事業者の支援を図るため,5月から6月にかけて各世帯にアプリのダウンロード方法やデジタル地域通貨を得られるQRコードを載せたお知らせを送付(1ポイントは1円相当,ポイント名は未定。夏ごろから市内の加盟店舗で使える予定)。

第2段階:市民の地域貢献活動や健康増進活動への参加に応じて市からポイントを付与。市民活動に対して新たな価値を付加することで,まちづくりへの市民参加を促す。

第3段階:市民が自らポイントをチャージできるようにする。店舗で使用されたポイントの一部を福祉関係の施設に助成する流れも作り,地元消費に新たな価値を加える。

デジタル市役所もはじまったことであり,今後の展開にちょっと期待できるかどうか。 

2022年3月11日金曜日

ロシアの非友好国

 ロシアの非友好国,48カ国・地域のリストを眺めてみた。ロシアの債務者が「非友好国リスト」の債権者にドルなどの外貨ではなくルーブルで相当額を支払えば,債務を履行したとみなすとしている。ルーブルの価値はどんどん下がっているので,債権者はたいへんだ。

アメリカ合衆国,カナダ,※EU加盟全27カ国,英国,ウクライナ,モンテネグロ,スイス,アルバニア,アンドラ,アイスランド,リヒテンシュタインモナコ,ノルウェー,サンマリノ,北マケドニア,日本,韓国,オーストラリア,ミクロネシア,ニュージーランド,シンガポール,台湾。

(※EU加盟国:アイルランド,イタリアエストニア,オーストリア,オランダ,キプロス,ギリシャクロアチア,スウェーデン,スペインスロバキアスロベニアチェコデンマークドイツハンガリー,フィンランド,フランスブルガリアベルギーポーランドポルトガル,マルタ,ラトビアリトアニアルーマニアルクセンブルク

一方で,NATO(北大西洋条約機構)の加盟国(全30カ国)のリストは次の通りである。

アイスランド,アメリカ合衆国,イタリア,英国,オランダ,カナダ,デンマーク,ノルウェー,フランスベルギーポルトガルルクセンブルク(以上原加盟国),ギリシャ,トルコ(以上1952年2月),ドイツ(1955年5月当時「西ドイツ」),スペイン(1982年5月),チェコハンガリーポーランド(以上1999年3月),エストニアスロバキアスロベニアブルガリアラトビアリトアニアルーマニア(以上2004年3月),アルバニア,クロアチア(以上2009年4月),モンテネグロ(2017年6月)北マケドニア(2020年3月)

(1)NATO加盟国で,EU非加盟国(9):アイスランド,アメリカ合衆国,英国,カナダ,ノルウェー,トルコ,アルバニア,モンテネグロ,北マケドニア 

(2)EU加盟国で,NATO非加盟国(6):アイルランド,オーストリア,キプロス,スウェーデン,フィンランド,マルタ

(3)NATO加盟国またはEU加盟国以外の非友好国(12):スイス,アンドラ,リヒテンシュタイン,モナコ,サンマリノ,日本,韓国,オーストラリア,ミクロネシア,ニュージーランド,シンガポール,台湾

(4)NATO加盟国であり非友好国でない国(1):トルコ


図:EU加盟国一覧(Wikipediaから引用)

2022年3月10日木曜日

フラッグシップ大学(3)

フラッグシップ大学(2)からの続き

3月9日に,文部科学省から教員養成フラッグシップ大学の指定についての報道発表があった。15大学14件(国立大学13,私立大学2)の申請があり,7大学がヒアリングされ,4件が指定された。

指定されたのは,東京学芸大学,福井大学,大阪教育大学,兵庫教育大学の4件である。ヒアリングまで通過した他の3件は,北海道教育大学,上越教育大学,愛媛大学である。なお,教員養成系単科大学(11校)のうち,愛知教育大学はヒアリングを通過せず,宮城教育大学,京都教育大学,奈良教育大学,鳴門教育大学,福岡教育大学の5校は申請していない。

基本的には高等教育や学術研究予算の選択と集中の教員養成系版であり,複雑化した教員免許状の課程認定制度に特区的な要素を盛り込んでさらにカオスな体系にするものだ。企業との連携も必須条件であり,どうしても利権の影がちらついてみえる。まあ,今のGIGAスクール構想全体からみれば,微々たるものかもしれない。

それでも,大阪教育大学が選ばれたことは,例え毒饅頭だとしても関係者は喜んでいるのだろう。あるいは既定路線だったのかもしれないが,申請書をざっと眺めこれまでの歴史的経緯を考えれば,まあ妥当な4大学の指定だと思われる。

この間の経緯はおよそ以下のとおりである。途中で新型コロナウィルス感染症問題のために非常に急ピッチでスタートしたものが1年間遅れることになった。

2019年1月18日 教育再生実行会議提言中間報告(技術の進展に応じた教育の革新ほか)教育再生実行会議 技術革新ワーキング・グループでの検討部分,ここに東京学芸大学の松田恵示と東北大学の堀田龍也がワーキンググループの有識者として加わっている。

2019年3月20日 中央教育審議会初等中等教育分科会教員養成部会教員養成のフラッグシップ大学検討ワーキンググループの設置について(上記の中間報告提言を受けたものだが最終報告を待たないのか・・・)

2019年5月17日 教育再生実行会議第十一次提言(技術の進展に応じた教育の革新ほか)

2019年5月23日 教員養成のフラッグシップ大学検討ワーキンググループ第1回会議

2019年12月19日 教員養成のフラッグシップ大学検討ワーキンググループ第7回会議 Society5.0時代に対応した教員養成を先導する「指定教員養成大学(フラッグシップ大学)」の在り方について(最終報告 案)

2020年1月23日 中央教育審議会初等中等教育分科会教員養成部会(兵庫教育大加治佐学長=部会長)で上記WGの最終報告を承認

2021年6月28日 中央教育審議会「令和の日本型学校教育」を担う教師の在り方特別部会 ここには,兵庫教育大学の加治佐哲也に加え,福井大学の松木健一が入っている。教員養成フラッグシップ大学の今後の進め方について教員養成フラッグシップ大学推進委員会の設置について,が議論されている。

2021年7月30日 中教審初等中等教育分科会教員養成部会の教員養成フラッグシップ大学推進委員会第1回会議,東京学芸大学の高橋純とキャリアリンクの若江眞紀が臨時委員として加わっている。主査は

2021年8月4日 教育職員免許法施行規則等の一部を改正する省令の施行等について(文部科学省総合政策局長)

2021年8月6日 教員養成フラッグシップ大学の公募について(文部科学省総合教育政策局長)

2021年12月29日 教員養成フラッグシップ大学推進委員会第2回会議ヒアリング対象大学の選定

2022年1月18日〜20日 ヒアリング対象大学のヒアリング日程

2022年2月12日 教員養成フラッグシップ大学推進委員会第3回会議指定大学の選定

2022年2月22日 中央教育審議会教員養成部会【非公開】秋田主査から審議結果報告

なんだかんだいっても,東京学芸大学と兵庫教育大学の加治佐さんが中心となって(福井大学の松木さんの影の下)この問題が回っていった。出発点は,教育再生実行会議の技術の進展に応じた教育の革新 というピンポイントのテーマだったのが,いつの間にか,

「令和の日本型学校教育」を担う教師の育成を先導し,教員養成の在り方自体の変革を牽引するため,1 先導的・革新的な教員養成プログラム・教職科 目の研究・開発,2 全国的な教員養成ネットワークの構築と成果の展開,3 取組の検証を踏まえた教職課程に関する制度の改善への貢献等

という大風呂敷に変貌してしまった。そして,教職大学院の雄である福井大学と兵庫教育大学の得意分野のレトリックでべたべたと塗りたくられたグロテスクな提案書が並ぶことになってしまった。


図:日本の国立教員養成大学マップ(惜しかった愛媛大学提案書資料から引用)

P. S. 松木健一さんは福井大学の企画担当の理事だし,若江眞紀さんは兵庫教育大学の特命戦略理事になっていた。

2022年3月9日水曜日

Apple Event 2022 March

  日本時間3月9日午前3時(米国時間 3月8日午前10時),Apple Event 2022 March が開かれた。

最近は1時間でさらっと終るEventが中心になっているようなイメージだ。超強力な新しいM1 Ultra チップの紹介では,登場する開発者たちがすべて女性だった。ティム・クックは青いシャツに黄色いバンドのApple Watchをはめている。今回のプレゼンテーションは全体に地味な感じに抑えられていた。戦争中なのであまり浮かれて騒ぐこともできない。さて,今回の目玉は次のとおり。

(1)iPhone SE3: 大変魅力的なのだけれど,自分の生活圏がソフトバンクの5Gサービスエリアになるのは当分先のようなので,それまでは機種更新することはない。SE2とSE3の比較をすると,サイズは全く同じ,A13 BionicからA15 Bionicへ,RAMは3Gが4G,セルラーは4Gが5Gになり,バッテリは13hから15h。12MP(フロント7MP)のカメラの機能はほぼ同じだが,Deep Fusionが加わった,何それおいしいの?指紋認証があるのがありがたいが,あいかわらずLightningコネクタのままだった。

(2)iPad Air: いま,自分が持っているiPad Pro 11" (第1世代)との違い。チップがA12XBionic からM1へ,セルラーモデルでは5Gが可能,12MPと7MPのカメラはフロントだけ広角12MPに。Apple Pencil 2 はともに使える。Proである必要はない

(3)Mac Studio: Mac Studio M1 Max のほぼ最小モデルは,M1 Maxの10コアCPU+24コアGPU+16コア NeuralEngine,32GBメモリ,1TBストレージで,27万円(同じ構成で MacBook Pro 14" = 36.5万円)。一方,Mac Studio M1 Ultra の最小モデルは,M1 Ultraの20コアCPU+48コアGPU+32コア NeuralEngine,64GBメモリ,1TBストレージで,50万円。

MacBook AirのM1チップ(8コアCPU+8コアGPU)の8倍の面積を持つのが M1 Ultraチップである。M1 Ultraの処理性能はM1の数倍以上で旧MacProを越えているのだった。これに27インチのApple Studioディスプレイが20万円か。研究費が潤沢だった25年前ならばたぶん買っていた。コンパクトなのがなにより。

P. S. 1 : その後,ベンチマークの情報も出てきたが,まだ,WindowsのゲーミングPCの最上位機レベルには達していないようだ。シングルコアの性能は,自分のM1 MacBook Airと同じだし。さらに,これは,次のMacProへの伏線であるという噂だった。あとM2との整合性や整理をどうするか問題とか。

P. S. 2 : macOS 12.3(Monterey),iPad OS 15.4,iOS 15.4 のアップグレードが引き続いてやってきた。目玉は,マスクをつけたままのFace ID認証と,Mac-iPad間のユニバーサルコントロールだ。前者は使わないし,後者は試してみたののの,サイドカーの場合と同様に今ひとつピンとこないのであった。


2022年3月8日火曜日

三次方程式の解(3)

三次方程式の解(2)からの続き

三次方程式 $\ x^3+p x + q=0\ $の解は,$x=y+\frac{p}{3y},\quad  y^3 = t\ $と変数変換すると,$\ t\ $の二次方程式$\ t^2+q t -\frac{p^3}{27}=0\ $の解から逆にたどって求めることができた。このとき,$x^3=1\ $の解,$\{1,\ \omega=\frac{-1+\sqrt{3} i}{2}, \omega^2=\frac{-1-\sqrt{3} i}{2} \}$ を活用した。

上記の2次方程式が2つの実数解を持つ場合の求解手順を前回示したので,ここでは2つの複素数解$\ t_1=-\frac{q}{2} + \sqrt{q^2/4 + p^3/27}, \ t_2=-\frac{q}{2} - \sqrt{q^2/4 + p^3/27} \ $の場合(根号の中身が負の場合)を考えてみる。

(2) $\ t_1,\ t_2\ $が複素数の場合:

この場合,$\alpha=t_1^{1/3}, \ \beta=t_2^{1/3}\ $は複素数となる。前回と同様に,$ \alpha^3 \beta^3 = t_1 t_2 =  -\frac{p^3}{27}$であるが,$\alpha, \beta$が複素数であることから,$\alpha \beta = -\frac{p}{3},\ \alpha \beta \omega = -\frac{p}{3},\ \alpha \beta \omega^2 = -\frac{p}{3}\ $のいずれかが成立する。

6次方程式の解が,$y_1 = \{ \alpha,\ \alpha \omega,\ \alpha \omega^2 \},\quad  y_2 = \{ \beta,\ \beta \omega,\ \beta \omega^2 \} \ $であり,三次方程式の解が$\ x=y -\frac{p}{3 y}\ $によって得られることは前回と同じだ。そこで,複素数(実数を含む)である$\ \beta$を含む解が,複素数(実数を含む)である$\ \alpha$を含む解に帰着することが示せればよいことになる。

$\alpha \beta$の積に対する3つの条件のうち,最初のものは実数の場合と同じなので,前回の議論をそのままつかうことができる。残りの2つの条件を当てはめると次のようになる。

$\{ \beta,\ \beta \omega,\ \beta \omega^2 \} /.  \beta \rightarrow -\frac{p}{3 \alpha \omega}  =  \{\ \alpha \omega  - \frac{p}{3 \alpha \omega},\ \alpha -\frac{p}{3 \alpha},\ \alpha \omega^2 - \frac{p}{3 \alpha \omega^2}\}$,

また,$\{ \beta,\ \beta \omega,\ \beta \omega^2 \}/. \beta \rightarrow -\frac{p}{3 \alpha \omega^2}  = \{ \alpha \omega^2 - \frac{p}{3 \alpha \omega^2},\ \alpha \omega - \frac{p}{3 \alpha \omega} ,\ \alpha -\frac{p}{3 \alpha }\}$

なお,条件の代入にはMathematicaのルール [元の表式/. 変数→変換式]を用いた。こうして,一組の6次方程式の解$ \ y_1=\{ \alpha,\ \alpha \omega,\ \alpha \omega^2 \} $ から3次方程式の一組の解 $\ x= y_1- \frac{p}{3 y_1}\ $が得られる。

2022年3月7日月曜日

三次方程式の解(2)

 三次方程式の解(1)からの続き

大学入試問題で扱われるような三次方程式$\ x^3 + p x + q =0\ $の解についての別のアプローチがあった。まず,$\ x=y+\frac{a}{y}\ $とおいて, $ y $の6次方程式に変換すると,$\ y^3+3a (y+\frac{a}{y}) +\frac{a^3}{y^3} + p (y+\frac{a}{y}) + q = 0\ $が得られる。これが$\ t=y^3\ $の2次方程式になるように,$\ 3a+p=0\ $という条件をつければ,$ a=-\frac{0}{3} $となる。このとき,$\ t^2 + q t -\frac{p^3}{27}=0\ $が成り立つ。

この2次方程式の解は,$\ t_1=-\frac{q}{2} + \sqrt{q^2/4 + p^3/27}, \ t_2=-\frac{q}{2} - \sqrt{q^2/4 + p^3/27} \ $となる。また,6次方程式の解は,$y_1^3=t_1, \ y_2^3=t_2$を満足している。ここで,$x^3=1$の解を,$ \{ 1, \ \omega=\frac{-1+\sqrt{3} i}{2}, \ \omega^2=\frac{-1-\sqrt{3} i}{2} \} $とする。

(1) $\ t_1,\ t_2$が実数の場合:

$\alpha=t_1^{1/3},\ \beta=t_2^{1/3}$を実数とすると,$y_1 = \{ \alpha,\ \alpha \omega,\ \alpha \omega^2 \},\quad  y_2 = \{ \beta,\ \beta \omega,\ \beta \omega^2 \}\ $となる。この6つの解からそれぞれ,$\ x=y -\frac{p}{3 y}\ $によって,もとの三次方程式の解がえられるので,解の組が過剰に存在するようにみえるが,$y_2$のセットは,$y_1$のセットと同じになることが確かめられる。

$ \alpha^3 \beta^3 = t_1 t_2 =  -\frac{p^3}{27}$で,$\alpha, \beta$がともに実数であることから,$\alpha \beta = -\frac{p}{3}$である。

これから,$x_2 = y_2 - \frac{p}{3 y_2} = \{ \beta-\frac{p}{3\beta},\ \beta \omega - \frac{p}{3 \beta \omega},\ \beta \omega^2 - \frac{p}{3 \beta \omega^2} \} $

$ = \{ -\frac{p}{3\alpha} + \alpha,\ -\frac{p}{3 \alpha \omega}+ \alpha \omega ,\ - \frac{p}{3 \alpha  \omega^2} +\alpha \omega^2  \} =  y_1 - \frac{p}{3 y_1} = x_1$

つまり,$\beta $からくる解はすべて$\alpha$からくる解の三つ組に帰着する。

三次方程式の解(3)に続く。


2022年3月6日日曜日

ルーシと日本

ウクライナからの続き

ウクライナを考えるときに,その地理的なサイズを日本と比べることで,イメージをつかみやすくなる。日本は人口1億2600万人,面積37万㎢ であり,一方ロシアは人口1億4600万人,面積1713万㎢ ,ウクライナは人口4400万人,面積60万㎢ ,ベラルーシは人口940万人,面積21万㎢ などである。

カスピ海やウラル山脈以東の広大な大地はとりあえずおいて,ロシアの中で,ベラルーシやウクライナと国境を接している中央連邦管区(首府モスクワ,人口3910万人,面積65㎢ )と南部連邦管区(首府ロストフ・ナ・ドヌ,人口1640万人,面積45万㎢ )だけを取り出してみる。この中南部ロシアとウクライナとベラルーシを加えた,旧キエフ大公国+αの部分(以下ルーシとよぶ)を日本と比べてみよう。

日本:人口1億2600万人,面積37万㎢ に対して,ルーシ:人口1億900万人,面積190万㎢ となる。面積はルーシが5倍だが人口はほぼ等しく,ともに半径1000kmの円内にほぼおさまる。さて,モスクワとキエフの距離が,仙台と大阪の距離にほぼ等しく800-900kmある。そこで,それぞれの中点を中心に半径500kmと半径1000kmの円を書いたものを図に示した。

ルーシにおけるウクライナは,人口が40%,面積が30%とかなりのウエイトを占めている。日本でこの割合を占める部分というと,九州+四国+中国+近畿(以下西日本とよぶ)であり,人口が4560万人(日本全体の36%),面積が12万㎢ (日本全体の32%)である。キエフの人口は,288万人でありウクライナの北端にある。大阪市の人口は,275万人であり,西日本の東端にある。いい感じでよく似た地理的集合が取り出せた。

図:ルーシの1000km圏内におけるウクライナと日本の1000km圏内における西日本

ようは,東京の人口を「仙台」に持ってくれば,西日本(大阪)/日本(「仙台」)≒ウクライナ(キエフ)/ルーシ(モスクワ)と考えて良いわけだ(人口密度だけルーシは日本の1/5なのだが)。で,次のような(顰蹙ものの)サイエンス・フィクションを想定することになる。

『第二次世界大戦後に,もとは同じ民族で言語もよく似た西日本と東日本は別の国になった。西日本では,これまでの親東日本的な政権が倒れて,中華帝国を中心とする西太平洋軍事同盟に加入したがる維新政権ができた。西太平洋軍事同盟は,北朝鮮,韓国,ベトナムとその領域を次第に南に拡大していた。東日本は,そんなことをされて核シェアリングされたミサイルが生駒山あたりに配備されるのはかなわないので,西日本を侵略する決断をした』

それでも侵略が一ミリたりとも正当化できないのは当然のことである。ただし,状況の多角的な視点からの理解は必要だと思われる。

[1]プーチンを無理筋の軍事的侵攻に踏み切らせた背景とは(videonewscom:河東哲夫)

2022年3月5日土曜日

Wordle(2)

 Wordle(1)からの続き

Wordleは5文字の英単語をあてるゲームだった。日本語でもできるのではと調べてみると,いくつか紹介されていた。アルファベットは26文字に限定されるので,単語成立条件を問わなければ5回でほぼすべての文字が含まれるかどうかが判定できる。しかし,日本語のかなでは,濁音,半濁音,拗音,撥音などもあるため,約80文字くらい必要である。したがって,16回≈3倍ほどの手間をかける必要があることになる。

(1)WORDLE ja(aseruneko):入力するのが辞書にない言葉でもかまわない。試行回数にも制限がない。ということでゲームとしてのおもしろさに欠けるかもしれない。

(2)ことのはたんご(大西力登):試行回数は10回までで,外来語も含まれる。辞書が弱いと感じたが,作者はそのあたりも考えた上で1万語の辞書を用いている。noteに詳しい経緯があるのがありがたい。

(3)ことばであそぼう(Desmond Lee):4文字で試行回数は12回にしてある。これも辞書が弱い。ただ,回数が少ない分,ヒントモードを加えることで日本語化した場合の難点を回避する作戦か。

(4)漢字ル(大坪弘尚):四字熟語版である。部首の共通点が指摘されるようになっている。漢字変換入力のインターフェースがちょっと気になる。試したところいきなりホールインワンになってしまった。

日本語のかなの出現頻度表はあるが,あまり絞り込みの役には立たない。支援ツールとしては,精選版日本国語大辞典を使ったが,これだけではちょっと難しい。○○から始まる、○○で終わる言葉一覧とか,ことばさあちとかあるにはあるがどんなものだろうか。

ことのはたんご 第43回 5/10
   ⬜⬜⬜⬜⬜ 20426
   ⬜⬜⬜⬜🟩 1476
   ⬜⬜⬜🟨🟩 40
   ⬜🟨⬜⬜🟩 29
   🟩🟩🟩🟩🟩 1
   図:ことのはたんごの実行例

2022年3月4日金曜日

Wordle(1)

最近,Twitterで流行るもの。緑色と黄色と灰色の四角形が5列×(〜5,6)行並んだ図のようなものをよく見かけるようになった。Wordleとあるので調べたところ,NewYork Timesについているオンラインゲームらしい。1回終ると何時間か待たされるので,1日に1回程度遊べるような気がする。

   Wordle 258 4/6
   🟨🟨⬜⬜🟨
   🟨🟨🟨🟨⬜
   🟩⬜🟨🟨🟩
   🟩🟩🟩🟩🟩
図:Wordleのtwitter出力の例

ワードル(Wordle)のルールは簡単である。アルファベット5文字の英単語を当てればよいのだ。ゲーム名は,Redditのソフトウェアエンジニアだった開発者のJosh Wardleの名前から来ているのか。

最初はノーヒントなので適当な5文字を入れる。ただし,辞書にあるような英単語でなければならない。正解の単語と同じ位置に同じ文字がある部分がグリーンで示される。この文字は確定だ。正解の単語に含まれてはいるが,位置が間違った文字は黄色で示される。次の推測では,この文字は別の位置に動かさなければならない。正解の単語に含まれていない文字は灰色で示される。これは次回以降の候補からは排除される。

この条件の元に,次の推測候補となる単語を考える。すると新しい判定結果が得られるので,この情報に基づいて修正する。正解にたどり着くまでこれを繰り返せばよい。ベイズ推定の精神ですね。

問題の鍵は,自分が持っている英単語のボキャブラリー数にあり,5文字で辞書に載っている単語をどれだけ準備できるかが重要だ。前に試したボキャブラリのテストで,自分には英語圏の10歳児並のボキャブラリーしかないことがわかっていたので,ここはちょっとチートを使うことにした。

bestwordlistのサイトでは,任意の文字数の英単語のリストを得ることができる。さらに,その単語の先頭の文字,末尾の文字,含まれる複数の文字などを指定することができるので,このゲームの目的にはまさにぴったりなのである。

戦略としては,まず出現頻度の高い文字晴耕雨読より)から攻略することが考えられる。1文字の出現確率は,{E} → 13%,{T, A, O, N, I, R, S, H} → 9%〜6%,{D, L, U, C, M} → 4%〜3%,{P, F, Y, W, G, B, V} → 2%〜1%,{K, X, J, Q, Z} → 0.5%〜0.1%となっている。また,2文字の出現頻度準のリストは,{TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF}である。

これらを利用して頻度が高い単語から攻めるのがよいと思われる。

2022年3月3日木曜日

水平社宣言

1922年の3月3日に,京都市の岡崎公会堂で,全国水平社の創立大会が開かれ,そこで, 水平社宣言が採択された。その100周年になる。奈良県御所市にある水平社博物館もリニューアルされて,3月3日にオープンする。

全國に散在する吾が特殊部落民よ團結せよ。

 長い間虐められて來た兄弟よ、過去半世紀間に種々なる方法と、多くの人々によつてなされた吾らの爲めの運動が、何等の有難い効果を齎(もた)らさなかつた事實は、夫等のすべてが吾々によって、又他の人々によつて毎に人間を冒涜されてゐた罰であつたのだ。そしてこれ等の人間を勦(いたは)るかの如き運動は、かへつて多くの兄弟を堕落させた事を想へば、此際吾等の中より人間を尊敬する事によつて自ら解放せんとする者の集團運動を起せるは、寧ろ必然である。

 兄弟よ、吾々の祖先は自由、平等の渇仰者であり、實行者であつた。陋劣なる階級政策の犠牲者であり、男らしき産業的殉教者であつたのだ。ケモノの皮剝ぐ報酬として、生々しき人間の皮を剝取られ、ケモノの心臓を裂く代價として、暖い人間の心臟を引裂かれ、そこへ下らない嘲笑の唾まで吐きかけられた呪はれの夜の惡夢のうちにも、なほ誇り得る人間の血は、涸れずにあつた。そうだ、そして吾々は、この血を享けて人間が神にかわらうとする時代にあうたのだ。犠牲者がその烙印を投げ返す時が來たのだ。殉教者が、その荊冠を祝福される時が來たのだ。

 吾々が穢多である事を誇り得る時が來たのだ。

 吾々は、かならず卑屈なる言葉と怯懦なる行爲によつて、祖先を辱しめ、人間を冒瀆してはならぬ。そうして人の世の冷たさが、何んなに冷たいか、人間を勦る事が何なんであるかをよく知つてゐる吾々は、心から人生の熱と光を願求禮讃(がんぐらいさん)するものである。

 水平社は、かくして生れた。

 人の世に熱あれ、人間(じんかん)に光あれ。    

大正十一年三月


写真:水平社創立の綱領と宣言(水平社博物館から引用)

2022年3月2日水曜日

クリミア

ロシアによる ウクライナ侵略問題の前にあったのが,ロシアによるクリミアの併合だった。高校のときに世界史を履修していたにも関わらず,世界史の常識に欠けているので,復習することに。

(1)ロシア帝国は1721年から1917年まで続き,その首都は,バルト海に面したサンクスペテルブルグ=ペトログラードだった。バルト海といえば,バルチック艦隊の母港は,かつては現在のラトビアにあるリバウ。現在は,リトアニアとポーランドに挟まれたロシアの飛び地であるカリーニングラードオイラーの橋の問題で有名なケーニヒスベルク)。なぜか,ロシア帝国の第8代皇帝のエカチェリーナ二世が,ポプラ社のコミック版世界の伝記にあって,小学生の人気ベスト10に入っている。どういうことなの?

(2)エカチェリーナ二世が1784年にクリミア半島をロシアに編入した。クリミア戦争は1853年から1856年にわたり,ロシア帝国とオスマン帝国の間でクリミア半島の周辺などで戦われた。黒海周辺をロシア帝国が支配することで,海軍力が増強されることに危惧をいだいたイギリスとフランスがオスマン帝国側に参戦する。クリミア半島南部の黒海艦隊の母港のセヴァストポリが陥落し,クリミア戦争はロシア帝国の敗北で終る。1905年のロシア第一革命が戦艦ポチョムキンの反乱につながる。

(3)1917年のロシア革命後,ボリシェヴィキがロシア帝国の各地の内戦を制圧する。その過程で誕生したクリミア・ソビエト社会主義共和国はロシア共和国に帰属するものとなり,1921年に,ロシア・ソビエト社会主義共和国(ロシア),ザカフカース社会主義連邦ソビエト共和国(アゼルバイジャン・アルメニア・グルジア),ウクライナ社会主義ソビエト共和国白ロシア・ソビエト社会主義共和国(ベラルーシ)の4ヵ国によってソビエト社会主義共和国連邦が成立した。1945年の国際連合の原加盟国51カ国には,ロシア連邦に加え,ベラルーシ,ウクライナが入っている。

(4)1954年,当時のフルシチョフソビエト連邦共産党中央委員会第一書記(1958年のソビエト連邦第4代閣僚会議議長=首相就任より前)は,ウクライナ融和策として,ペレヤスラフ協定300周年を記念し,ソ連の領土内の管轄変更としてクリミア半島をロシア・ソビエト連邦社会主義共和国からウクライナ・ソビエト社会主義共和国に移管させた。なお,フルシチョフはウクライナ人であり,ウクライナのとの国境付近のロシアで生まれ,その後,ウクライナに移住している。

(5)1991年のソビエト連邦の解体後,クリミア半島の帰属や国境線の確定を巡って,ロシア,ウクライナ,ベラルーシの協議が行われたが,ロシアは,ウクライナの核兵器廃棄の方を優先して,クリミア半島をウクライナの領土と認めた。ただし,セヴァストポリの黒海艦隊の母港としての租借権や,クリミア半島東部のケルチ海峡の自由航行権,海底資源の共同開発を条件とした。

(6)このような歴史的経緯から,クリミア半島にはロシア系住民が多いため,ウクライナ国内におけるクリミア自治共和国としての位置を確立する。これが,住民投票などを経て,ロシアへの帰属を決議することになるのが,2014年のクリミア危機である。ロシア軍の装備を持つ,リトル・グリーンメンとよばれる覆面の武装集団がこの過程で暗躍している。



写真:クリミア半島の周辺(世界史の窓より引用)

[1]ウクライナ情勢から見た地域と国家(塩川伸明,2014)

[2]クリミアの歴史(Wikipedia)


2022年3月1日火曜日

丸山レクチャー

 統計力学の準備でエントロピーを検索していたら,Maruyama Lecturesの情報とエントロピー入門Part 1というコンテンツが網にかかってきた。内容は確かに面白そうで大部の講演資料もついていたけれど,ちょっと詰めが甘いというか,話題網羅主義でストーリーができていないような感じだった。

ただし,タイトルには自分の中2ごごろをくすぐる興味深いものが並んでいるではないか。ジャンル一覧は,エンタングルメント,エントロピー,量子論と量子コンピュータ,計算科学と複雑性,認識の理論,プログラムと論理,人工知能,言語理論というもので,最新のレクチャーは,「Bob Coeckeの “Picturing Quantum Processes”に依拠して、量子過程を図解する手法としてのString Diagramを学びます」なのだから。

いったいどこのおじさんがこれを作っているのかと調べてみると,丸山不二夫(1948-)さんだった。どこかで見たことがある名前だと思ったら,稚内北星学園大学の初代学長であり,たぶん黎明期のパソコン雑誌で連載を持っていたので知っていたのだと思う。それがちょっと見当たらない。

丸山さんの経歴によれば,東京大学教育学部の出身で,一橋大学大学院社会学研究科博士課程修了,指導教官は岩崎允胤となっている。岩崎さんはマルクス主義哲学の御大であり,「現代自然科学と唯物弁証法」は大学生のときの必読書(ホント?)だった。それがMaruLaboのマルレクにつながっていると考えればなんと納得が行く話だ。


写真:圏論的量子力学の書影(Amazonから引用)


2022年2月28日月曜日

オデッサ

ウクライナからの続き

黒海沿岸の港湾都市オデッサは ,人口100万人のウクライナの第三の都市。ちなみに首都キエフは人口300万人弱なので,大阪と同じ規模だ。北130kmのところにチェルノブイリ原子力発電所があり,事故を起こしたチェルノブイリ4号炉への観光ツアーもあるらしい。

そのオデッサが出てくるのが,セルゲイ・エイゼンシュテイン(1898-1948)の映画「戦艦ポチョムキン(1925)」だ。大学に入って,休日には映画を見ることが多かったが,岩波新書の「映画の理論(岩崎昶)」などを読んでいると,モンタージュ理論を確立したエイゼンシュテインは必見ということだ。それで,戦艦ポチョムキンを見に行くことに。

1905年のポチョムキン号における水兵の反乱は歴史的な事件である。オデッサの階段での虐殺シーンは史実ではないらしいが,印象的だったし,全体のモノクロームのロシア革命前夜的なイメージはよかった。後に,1917年のロシア革命がテーマであり,「俺達に明日はない」のウォーレン・ベイティが監督主演した「レッズ」を見たけれど,エイゼンシュタインの迫力には及ばなかった。


写真:オデッサの階段(Wikipediaから引用)

2022年2月27日日曜日

ウクライナ

 ウクライナへロシアの侵略が起こったのは,ウクライナへのNATOの拡大にたいする強い拒否反応を誘導し,ドイツとロシアの間の天然ガスパイプライン,ノルドストリーム2を妨害するための米国の思惑による部分があるという話があった。事の真偽はわからないが,日本のメディアはアメリカからの情報だけでまわっている。いや,だからといって,プーチンの行動はまったく正当化できないが。ウクライナが,グルジアのようになるのか,クリミアのようになるのかはまだわからない。

ロシアとウクライナの前身が1つの国であった,キエフ大公国(882-1240)の時代から考えれば,キエフが京都でモスクワが鎌倉のようなものなのだ。ロシアという名称自体が,キエフ大公国の正式名称であるルーシから来ている。自分たちのルーツが奪われて敵側軍事同盟に参加することへの圧倒的な拒否感ということか。

ウクライナといえば,中学校の社会科の時間に学んだ,肥沃な大地(黒土)と小麦というイメージだった。また,京都市の姉妹都市のキエフといえば,ムソルグスキーの「展覧会の絵(1874)」の「キエフの大門」か。

それ以外で,記憶にあるのは,ビージーズが1969年に発表したアルバムの「オデッサ」だ。1899年に遭難した架空の船の物語というコンセプトアルバムで,当時はビートルズの「ホワイトアルバム(1968)」に相当するというイメージだった。オデッサの収録曲「若葉のころ」と「メロディフェア」が,それぞれ映画「小さな恋のメロディ(1971)」の音楽として少し流行った。なぜ,オデッサという名前だったのか,本当に黒海に面したオデッサのことなのかどうかも確かではなく,当時も謎のままだった。


図:ウクライナの地図(AFP通信記事から引用)

P. S. Wikipedia 大鵬幸喜の項目から引用:「1940年(昭和15年),ウクライナ人の元コサック騎兵将校、マルキャン・ボリシコの三男として,日本の領土である樺太の敷香町(ロシアの呼び名サハリン州ポロナイスク)に生まれた。マルキャンはロシア革命後に日本に亡命した,所謂白系ロシア人であった。」

[1]満州事変(1931年)・・・柳条湖事件後,関東軍による占領,傀儡国家樹立

[2]イラク戦争(2003年)・・・虚偽事実による米英豪軍の侵攻と政権の転覆

[3]南オセチア紛争(2008年)・・・グルジア(ジョージア)が2州の支配権を喪失

[4]クリミア危機(2014年)・・・クリミア共和国の一方的独立宣言後,ロシアによる併合


2022年2月26日土曜日

関係量子力学(2)

Relational Quantum Mechanicsを関係量子力学と訳したけれどこれでよかったのか気になる。Relationalは形容詞なので ,関係的とかではないのかと思った。考えてみれば,リレーショナル・データベースの場合もカタカナでなければ関係データベースなわけで,英和辞典の例をみれば,ほとんどの場合,関係+名詞でよかった。

Relational Quantum Mechanics(RQM)の日本での評判を調べてみた。CiNiiではゼロでした。つまりは,ほとんど問題にもされていないということか。

Twitterでは2件ある。1つは東北大学の堀田昌寛さんで,RQMは標準コペンハーゲン解釈(フォン・ノイマン=ウィグナー流,量子力学=情報理論)とほとんど同じだが,意識を表わす直交基底系の選択ができない不良設定問題に陥っていると断じている(2021年11月)。堀田流解釈では意識が公理として定義(設定)できているということなのか。

もう1つは高知工科大学の全卓樹さんと阿蘇の史(Jimmy Ames)さんのTwitter上での議論だ(Carlo Rovelliの関係的量子力学をめぐって)。全さんの否定的評価を中心とした対話が続いていた(2017年)。まあ,最終的な落とし所はそこまででもなかったのかもしれない。

堀田さんは(あるいは皆さんは),簡単に人間の意識状態や宇宙の状態を1つのケットベクトルで表現している。フォン・ノイマンやウィグナーはそういう議論をしていたのかもしれない。抵抗はないものの,普通の教科書には書いていないのでちょっと気持ち悪い。

量子力学の解釈問題の歴史に関するオックスフォードのハンドブックが来月にも出版されそうだ。ちょっと高いので購入はためらわれるが,目次だけ整理してみた。

The Oxford Handbook of the History of Quantum Interpretations
Full Professor of Physics and History of Physics Olival Freire Jr
Oxford University Press, 2022/03/07 - 1312p
Introduction 1 

Part I Quantum Physics - Scienftific and Philosophical Issues Under Debate
1. Quantum Mechanics is Routinely Used in Laboratories with Great Success, but No Consensus on its Interpretation has Emerged 7
2. Philosophical Issues Raised by Quantum Theory and its Interpretations 53

Part II Historical Landmarks of the Interpretations and Foundations of Quantum Physics
3. Quantization Conditions, 1900-1927 77
4. Of Weighting and Counting: Statistics and Ontology in the Old Quantum Theory 95
5. Dead as a Doornail? Zero-Point Energy and Low-Temperature Physics in Early Quantum Theory 117
6. The Early Debates about the Interpretation of Quantum Mechanics 135
7. Foundations and Applications: The Creative Tension in the Early Development of Quantum Mechanics 173
8. The Statistical Interpretation: Born, Heisenberg, and von Neumann 1926-27 203
9. A Perennially Grinning Cheshire Cat? Over A Century of Experiments on Light Quanta and Their Perplexing Interpretations 233
10. The Evolving Understanding of Quantum Statistics 255
11. The Measurement Problem 281
12. Einstein's Criticism of Quantum Mechanics 303
13. Tackling Loopholes in Experimental Tests of Bell's Inequality 339
14. The Measuring Process in Quantum Field Theory 371
15. The Interpretation Debate and Quantum Gravity 393
16. Quantum Information and the Quest for Reconstruction of Quantum Theory 417
17. Natural Reconstructions of Quantum Mechanics 437
18. The Axiomatization of Quantum Theory through Functional Analysis: Hilbert, von Neumann, and Beyond 473
19. Tony Leggett's Challenge to Quantum Mechanics and its Path to Decoherence 495

Part III Places and Contexts Relevant for the Interpretations of Quantum Theory
20. The Copenhagen Interpretation 521
21. Copenhagen and Niels Bohr 543
22. Grete Hermann's Interpretation of Quantum Mechanics 567
23. Instrumentation and the Foundations of Quantum Mechanics 587
24. Early Solvay Councils: Rhetorical Lenses for Quantum Convergence and Divergence 615
25. The Foundations of Quantum Mechanics in Post-War Italy's Cultural Context 641
26. Foundations of Quantum Physics in the Soviet Union 667
27. Early Japanese Reactions to the Interpretation of Quantum Mechanics 1927-1943 687
28. Form and Meaning: Textbooks, Pedagogy, and the Canonical Genres of Quantum Mechanics 709
29. Chien-Shiung Wu's Contributions to Experimental Philosophy 735
30. On How Epistemological Letters Changed the Foundations of Quantum Mechanics 755
31. Quantum Interpretations and 20th Century Philosophy of Science 777

Part IV Historical and Philosophical Theses
32. Bohr and the Epistemological Lesson of Quantum Mechanics 797
33. Making Sense of the Century-Old Scientific Controversy over the Quanta 825
34. Orthodoxy and Heterodoxy in the Post-war Era 847
35. The Reception of the Forman Thesis in Modernity and Postmodernity 871
36. Quantum Historiography and Cultural History: Revisiting the Forman Thesis 887
37. The Co-creation of Classical and Modern Physics and the Foundations of Quantum Mechanics 909
38. Interpretation in Electrodynamics, Atomic Theory, and Quantum Mechanics 937

Part V The Proliferation of Interpretations
39. Hidden Variables 957
40. Pure Wave Mechanics, Relative States, and Many Worlds 987
41. Is QBism a Possible Solution to the Conceptual Problems of Quantum Mechanics? 1007
42. Agential Realism -- A Relation Ontology Interpretation of Quantum Physics 1031
43. The Relational Interpretation 1055
44. The Philosophy of Wholeness and the General and New Concept of Order: Bohm's and Penrose's Points of View 1073
45. Spontaneous Localization Theories Quantum Philosophy between History and Physics 1103
46. The Non-Individuals Interpretation of Quantum Mechanics 1135
47. Modal Interpretations of Quantum Mechanics 1155
48. A Brief Historical Perspective on the Consistent Histories Interpretation of Quantum Mechanics 1175
49. Einstein, Bohm, and Bell: A Comedy of Errors 1197
50. The Statistical Ensemble Interpretation of Quantum Mechanics 1223
51. Stochastic Interpretations of Quantum Mechanics 1247
Index 1265


写真:The History of Quantum Interpretationの書影(amazonより引用)

2022年2月25日金曜日

関係量子力学(1)

 関係量子力学について,Stanford Encyclopedia of Philosophy で勉強してみる。Copyright © 2019 by Federico Laudisa, Carlo Rovelli で本人が書いているので安全なやつだ。

関係量子力学(Relational Quantum Mechanics)

関係量子力学(RQM)は,現在まで議論されている量子力学の解釈の中で,最も新しいものである。RQMは,1996年に量子重力を研究していたロベリによって導入されたが(Rovelli 1996),この十年の間にしだいに,しかし着実に関心が高まってきた。RQMは,本質的に教科書的な「コペンハーゲン」解釈の改良版であり,観測者の役割を担えるのは古典的な系に限定されず,あらゆる物理系が担うことができるとされている。RQMは,波動関数(より一般的には量子状態)の存在論解釈を否定している。波動関数や量子状態は,古典力学のハミルトン=ヤコビ関数と同様の意味で,補助的な役割しか果たしていない。これは,存在論的な言及の否定を意味するわけではない。RQMは,古典力学と同様に,物理変数によって記述される物理系によって与えられる存在論に基づいている。古典力学との違いは,(a)変数は相互作用のときだけ値をとること,(b)変数のとる値は相互作用の影響を受ける(他の)システムに対して相対的にのみ決まることである。ここでいう「相対的」とは,古典力学において速度が他の系に対する系の性質であるのと同じ意味である。したがって,RQMでは,世界は,物理変数の時間的な相対値によって記述される,疎な相対的事象の発展的なネットワークとして記述される。

RQMの基礎となる物理的仮定は次のようなものである。S'に対する相対的変数の(未来の)値に対する確率分布は,S′に対する相対的な変数の(過去の)値に依存するが,別のシステムS″に対する相対的な変数の(過去の)値には依存しない。

この解釈では,定式化されるべき古典的世界の存在や,特別な観測者系を想定する必要はなく,測定に特別な役割を与えることもない。そのかわり,任意の物理システムがコペンハーゲン解釈における観測者の役割を果たすことができ,任意の相互作用が測定と見なされることを仮定している。これは,上記の物理的仮定により,量子論の予言を変えることなく可能である。なぜならば,S′によって観測される干渉効果は,別のシステムS″と相対的な変数の実現によって消去されることがないからだ(もちろんデコヒーレンスによって抑制されることはある)。このように,RQMは,隠れた変数,多世界,波束の収縮機構,あるいは,心・意識・主観性・エージェントなどの特別な役割を必要とせずに,完全に量子力学的な世界を理解することができる。

このような簡略化の代償として,物理変数が非相関的な値を持ち,すべての時間に存在するとされる古典力学の強い実在論が否定される。変数が相互作用時にのみ値をとるという事実は,疎な事象(または閃光する)の存在論を与える。変数が参照する系によってラベル付けされるという事実は,世界の表現に指標性の段階概念を追加することになる。

RQMは形而上学的に中立であるが,以下に詳述する意味で,強い実在論(Laudisa 2019)に疑問を示す強い関係性の立場にある。このように実在論に障るため,RQMは,構成的経験主義(van Fraassen 2010),新カント主義(Bitbol 2007, Bitbol 2010),最近では反一元論(Dorato 2016),構造実在論(Candiotto 2017)など様々な哲学的観点の文脈で順々に嵌められてきた(Brown 2009, Wood 2010)。この解釈は,量子ベイズ主義(Fuchs 2001, 2002),ヒーリーのプラグマティズム的アプローチ(Healey 1989),特にザイリンガーとブルックナーによって論じられた量子論の見解と共通する面がある(Zeilinger 1999, Brukner & Zeilinger 2003)。

たぶん,弱測定や弱値,圏論,ベイズ推定などとも相性が良さそうな 雰囲気がただよう。そういえば,圏論的量子力学という本も出版されていたが,これは正確には,Categories for Quantum Theory: An Introductionなので少し違うかもしれない。いやいや,Categorical Quantum Mechanicsもあった。

圏論的量子力学は,圏論を利用した図式的表現にポイントがあって,解釈問題とはあまり近接しない話題のようだ。量子計算への応用があるとかなんとか。arxivで調べてみると,"Categorical Quantum Mechanics"が63件,"Relational Quantum Mechanics"が43件で,どちらも流行っていません。

[1]Fantastic Quantum Theories and Where to Find Them (Stefano Gogioso)・・・怪しい量子力学のオンパレード

2022年2月24日木曜日

平方完成

 平方完成は,入試問題を解くときなど,条件設定の場面でたいへん重宝する技法だ。ちょっと手計算が面倒な式がでてきたので,Mathematicaに任せようと思った。

ところが,探してみてもMathematicaで平方完成する関数が組み込まれていないようなのだ。もしかしたら調べ方が足りないのかもしれないが,普通に考えるとイの一番に出てきても良さそうな機能なのだが。

それらしいユーザ定義関数がいくつか見つかったけれど,2変数の整式を代入しても思ったような変形ができず,望みのものではなかった。しかたがないので,自分で関数パーツを考えることにした。これを一般化するには,Mathematicaプログラミングにおける文法の知識が足りなさすぎる。

ここで考えたのは,ある変数の二次式を与えたときに,平方完成された部分と残余部分のリストを返すユーザ定義関数 sq[式, 変数]だ。変数がn個ある場合は,n回繰り返して使う必要があるという残念なコード素片だ。

sq[f_, v_] :=
 Module[{a, b},
  a = Coefficient[f, v^2];
  b = Coefficient[f, v];
  {a (v + b /(2 a))^2,
  c = f - a (v + b /(2 a))^2}] // Simplify
これを使って次のような計算ができる。
In[1]:= sq[2 x^2 - 4 x y + 2 y^2 + 24 x - 24 y + 288 + 3 x y, x] 
Out[1]= {1/8 (-24 - 4 x + y)^2, 216 - 18 y + (15 y^2)/8}
In[2]:= sq[%[[2]], y] 
Out[2]= {3/40 (24 - 5 y)^2, 864/5}

2022年2月23日水曜日

ヘルゴラント

 ヘルゴラントは,ドイツの北部,北海に浮かぶとても小さな島である。

ゲッチンゲンハイセンベルクは,1924年9月から1925年4月末までコペンハーゲンのボーアの理論物理学研究所に在籍した。5月に入って,花粉症を避けるためにヘルゴラントに10日ほど滞在し,そこではじめて量子力学の正しい法則にたどり着いた。ゲッチンゲンのボルンのところに戻ったハイゼンベルクは,1925年の9月に "Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen" (運動学的・力学的関係の量子論的再解釈) という,今日の量子力学の出発点となる論文を出す。

ループ量子重力理論の研究で有名なカルロ・ロヴェリが,量子力学が誕生したこの島の名前をつけた一般向けの著書 "Helgoland" が2020年に出版された。2021年には冨永星による邦訳,「世界は「関係」でできている:美しくも過激な量子論」が出ている。書名がヘルゴランドのままだったら,誰も買わなかったかもしれない。

この本の内容は,ハイゼンベルクによる量子力学の誕生から出発して,ロヴェリが提唱している関係量子力学(Relational Quantum Mechanics)のエッセンスを説くものらしい。というのもまだ,読んでいないので目次しかわからないからだ。

これを,意識の科学に関わっている,神経科学者の土谷尚嗣と数理物理学者で小嶋泉の学生だった西郷甲矢人が取り上げ,意識ラジオの中でロヴェリの著書を巡る対談をしていた。彼らはさらに,脳科学の大泉匡史などにつながっていた。意識を圏論で定式化できる関係によって理解しようとする流れが,関係量子力学とのつながりを発見したということか。

世界は「関係」でできているー美しくも過激な量子論
カルロ・ロヴェッリ 冨永星

第一章 奇妙に美しい内側を垣間見る
1 若きハイゼンベルクの突拍子もない思いつきー「オブザーバブル」
2 シュレーディンガーの紛らわしいΨー確率
3 この世界の粒状性ー量子
第二章 極端な思いつきを集めた奇妙な動物画集
1 重ね合わせ
2 Ψを真剣に受け止めるー多世界と,隠れた変数と,自発的収縮と
3 不確定性を受け入れる
第三章 みなさんにとっては現実,でもわたしにとっては現実でない事柄とは?
1 かつて,この世界が単純にみえたことがあった
2 関係
3 希薄で曰く言いがたい量子の世界
第四章 現実を織りなす関係の網
1 エンタングルメント
2 三人一組の踊りが織りなすこの世界の関係
3 情報
第五章 立ち現れる相手なくして,明瞭な記述はない
1 ボグダーノフレーニン
2 実体なき自然主義ー状況依存性
3 土台がない? ナーガルージュナ(龍樹
第六章 「自然にとっては,すでに解決済みの問題だ」
1 単純な物質?
2 「意味」は何を意味しているのか
3 内側から見た世界
第七章 でも,それはほんとうに可能なのか


写真:RobvelliのHelgolant(イタリア語原著の書影)

[1]圏論による意識の理解(土谷尚嗣・西郷甲矢人,2019)

2022年2月22日火曜日

三次方程式の解

 二次方程式の解は,与えられた2次式を平方完成すればよいので,公式を忘れても導ける。まあ,平方完成の手順を理解して導出できるくらいなら,かつて曾野綾子に「二次方程式の解の公式を学んだことは,人生において何の役にもたたなかった」とボロクソに腐された解の公式もすぐに出てくるだろうから心配する必要はない。

準備として,$x^3=1$の解を,$\{ 1,\ \omega=\frac{-1+\sqrt{3} i}{2}, \ \omega^2=\frac{-1-\sqrt{3} i}{2} \}$としておく。

三次方程式$a x^3 + b x^2+ c x + d = 0$は,$x^3 +p x + q =0$ の形にすることができる。次に,因数分解の公式,$x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-x y -y z -z x)$を用いる。つまり,$p = - 3 y z$,$q = y^3 + z^3$とすれば,もとの三次方程式は因数分解できることになり,すなわち,解が求まることになる。

ここで,$y^3$と$z^3$の対称式を考えるのがポイントである。$p^3=-27 y^3 z^3$から,$y^3$と$z^3$は,$t^2-q t -(p/3)^3=0$の解である。$t = (q/2) \pm \sqrt{(q/2)^2+(p/3)^3}$

因数分解された右辺の第2項を$x$の2次式と考えてさらに因数分解するため,$x^2-(y+z)x +y^2 -yz + z^2 = 0$とおいて,2次方程式の解の公式を使うと,

$x=\frac{1}{2} \bigl( y + z \pm \sqrt{(y+z)^2-4(y^2+z^2-yz)} \bigr) = \frac{1}{2} \bigl( y + z \pm \sqrt{-3y^2+6yz-3z^2} \bigr)$

$\quad= \frac{1}{2} \bigl( y + z \pm (y - z ) \sqrt{3}i  \bigr) = -y \frac{-1 \mp \sqrt{3}i}{2} -z \frac{-1 \pm \sqrt{3}i}{2}$

したがって,$x^3 +p x + q =0$の解は,$\{ -y -z, \ -\omega^2 y -\omega z, \ -\omega y - \omega^2 z \}$,ただし,$\{ y , z \}= \{ \bigl( q/2 + \sqrt{(q/2)^2+(p/3)^3} \bigr)^{1/3}, \ \bigl ( q/2 - \sqrt{(q/2)^2+(p/3)^3} \bigr)^{1/3} \} $である。

2022年2月21日月曜日

二項分布と正規分布

統計物理学のための準備シリーズが続く。ここでは,$N$が大きいときの二項分布を正規分布で近似する方法を確かめる。

アボガドロ数$N$個の粒子を,左右2つの箱に確率$p$と$q$($p+q=1$)で入れるとき,分配される粒子の個数の確率分布は二項分布に従う。すなわち,左の箱に入る粒子の数を$n$,その場合の確率を$r(n)$とすると,$r(n)={}_N C_{N-n} p^n q^{N-n}=\frac{N!}{n!(N-n)!} p^n q^{N-n}, \quad \sum_{n=0}^N {}_N C_{N-n} p^n q^{N-n} =(p+q)^N = 1$

ここに,スターリングの公式,$n! \simeq \sqrt{2\pi n} (\frac{n}{e})^n $ 等を当てはめると,

$r(n) \simeq \sqrt{\frac{N}{2\pi n(N-n)}} \frac{N^N p^n q^{N-n}}{n^n (N-n)^{N-n}} =  \sqrt{\frac{N}{2\pi n(N-n)}} \bigl( \frac{Np}{n}\bigr)^n \bigl(\frac{Nq}{N-n} \bigr)^{N-n}$

$\therefore \log r(n) \simeq n \log \frac{Np}{n} + (N-n) \log \frac{Nq}{N-n} $

 ただし,$O(\{n,N\}^{-1/2})$である初項はおとす。極値を求めるため,$\log r(n)$を$n$で微分して,

$\log Np -1 -\log n -\log Nq +\log(N-n) +1 =0, \quad \log \frac{Np}{n} = \log \frac{Nq}{N-n}$

極値を与えるのは$n=Np$であり,このとき$r(n)=\sqrt{\frac{1}{2\pi N p q}}$ となる。

次に,$n=Np+x$とおき,$r(n)$を$n=Np$のまわりに展開して$x$の2次近似式を求める。ただし,$x \ll Np$であり,$\log (1\pm x) \simeq \pm x + \frac{x^2}{2}$を用いる。

$r(n )= \sqrt{\frac{1}{2\pi p q N}} \ \exp \{ -n \log \frac{n}{Np} - (N-n) \log \frac{N-n}{Nq} \}$

$\quad\quad = \sqrt{\frac{1}{2\pi p q N}} \ \exp \{ -(Np+x) \log (1+ \frac{x}{Np}) - (Nq-x) \log (1-\frac{x}{Nq}) \}$

$\quad\quad = \sqrt{\frac{1}{2\pi p q N}} \ \exp \{ -(Np+x)  ( \frac{x}{Np}+ \frac{x^2}{2 (Np)^2} ) - (Nq-x)  (-\frac{x}{Nq} + \frac{x^2}{2 (Nq)^2} ) \}$

$\quad\quad = \sqrt{\frac{1}{2\pi p q N}} \ \exp \{ -(x + \frac{x^2}{2 Np}) - (-x + \frac{x^2}{2 Nq}) \}$

$\quad\quad = \sqrt{\frac{1}{2\pi p q N}} \ \exp \{ - \frac{x^2}{2 p q N} \} = \sqrt{\frac{1}{2\pi p q N}} \ \exp \{ - \bigl(\frac{n-Np}{\sqrt{2 p q N }}\bigr)^2 \} $

このとき,次の規格化条件が満たされる。$\sigma = p q N$とおいて,$\int_{-\infty}^{\infty} \sqrt{\frac{1}{2 \pi \sigma}} \ \exp \{ - \bigl(\frac{n-Np}{\sqrt{2 \sigma }}\bigr)^2 \} dn = 1$

[1]De Moivre - Laplace Theorem