ファインマンダイアグラムに限らず,物理屋さんは図形表現された式をみるとわくわくする。角運動量代数の図形表現は,大学院生の時に見つけて勉強しはじめたけれど,時間がなくて挫折してしまった。テンソル代数に関る図形表現にも様々な流儀があるようだ。
上記論文のイントロダクションだけを訳出してみる。
物理を専攻する学生にとってベクトル解析の習得は最も重要な課題の一つである。しかし,初心者には面倒な添字の扱いに困難を感じることが多いようだ。一方,テンソル代数を直観的に扱って効率的に計算する図形的表現があることが知られている。これは代数計算と同等な記憶コードに相当するものだ。問題は,LaTeXで簡単に書けないことかもしれない。まったくできないわけではないが。
図形的表現法は,教育的な文脈ではベクトル空間の代数的な扱いについて応用されているが,これを3次元ユークリッド空間のベクトル解析におけるベクトル場の微積分に適用している文献はない。
そこで,物理学専攻の学生と教育者を対象として「ベクトル解析の図形表現」を導入し、その教育学的利点を示し,純粋な数学的な等式と物理学の実用計算の両方を含む十分な演習を提供します。図形表現は教育環境で容易に利用でき,ベクトル解析の学習と実践の障壁を下げるだけでなく,学生に興味を持たせ、ベクトル解析の構文を操作してテンソルの言語を発見的に学習して理解するようになる。
FreeTikZとか。
0 件のコメント:
コメントを投稿