というタイトルのWikipedia記事がある(円周率が22/7より小さいことの証明)。
証明は次の通りである。
\begin{equation}
\begin{aligned}
0 &< \int_0^1 \dfrac{x^4(1-x)^4}{1+x^2} dx \\
& = \int_0^1\dfrac{x^4-4x^5+6x^6-4x^7+x^8}{1+x^2} dx\\
&= \int_0^1x^6 -4x^5 + 5x^4 -4x^2 +4 -\dfrac{4}{1+x^2} dx\\
&=\frac{x^7}{7}-\frac{2 x^6}{3}+x^5-\frac{4 x^3}{3}+4 x-4 \tan^{-1} x\ \Big|_0^1\\
&= \frac{1}{7}-\frac{2}{3}+1-\frac{4}{3}+4-\pi\\
&=\frac{22}{7}-\pi
\end{aligned}
\end{equation}
同様にして円周率が355/113より小さいことも証明される。
\begin{equation}
\begin{aligned}
0 &< \int_0^1 \dfrac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)} dx \\
&= \cdots\\
&= \frac{12 x^{17}}{791}
-\frac{102 x^{16}}{791}
+\frac{3151 x^{15}}{6780}
-\frac{703 x^{14}}{791}
+\frac{393 x^{13}}{452}
-\frac{23 x^{12}}{113}\\
&-\frac{145 x^{11}}{452}
-\frac{5 x^{10}}{791}
+\frac{1409 x^9}{3164}
-\frac{4 x^7}{7}
+\frac{4 x^5}{5}
-\frac{4 x^3}{3}
+4 x−4 \tan^{-1}x \Bigr|_0^1 \\
&= \cdots\\
&=\frac{355}{113}-\pi
\end{aligned}
\end{equation}
えーっ,3164と816と25はどこから連れてきたのだ・・・という方は上記記事から参考文献をたどってみよう。この世界にはまだまだ自分が知らないことが沢山埋もれている。
0 件のコメント:
コメントを投稿