$x$軸上の原点Oに凹面鏡の底を接地させ,$y$軸上にある焦点Fと原点Oの距離を$f$とする。原点近傍の凹面鏡の断面の曲線上の点P$(x, y(x))$について,直線FPの傾きは$-\frac{f}{x}$と近似できる。したがって,点Pにおける鏡面の傾きは,$\frac{x}{2f}$となる。つまり,$\frac{dy}{dx}= \frac{x}{2f}$という微分方程式が成り立つ。つまり,少なくとも原点近傍では $y(x) = \frac{x^2}{4f}$という2次関数でなければならない。
Mathematicaでのシミュレーションコードを書いてみた。
f2[a_] := a^2
t2[a_] := ArcTan[D[f2[x], x]] /. x -> a
s2[a_] := Tan[Pi/2 + 2*t2[a]]
g2[y_, a_] := s2[a]*(y - a) + f2[a]
TrigExpand[f2[a] - a*s2[a]] // Simplify
Out[-]= 1/4
p0 = Plot[f2[x], {x, 0, 1}, PlotStyle -> {Red}];
p2 = Table[Plot[g2[y, 0.1*n], {y, 0, 0.1*n}], {n, 1, 8}];
q2 = Table[b = 0.1*n;
Graphics[ Line[{{b, 1}, {b, f2[b]}},
VertexColors -> {Green, Blue}]],{n, 1, 8}];
Show[{p0, p2, q2}, PlotRange -> All, AspectRatio -> Automatic]
図:凹面鏡(放物面鏡)の断面図と焦点への結像
先ほどの議論を一般化する。凹面鏡の断面の曲線を$y(x)$とする。点P$(x,y(x))$における接線の傾きは,$y'(x)$であり,点Pにおける入射光線と法線のなす角度は,$\theta = \arctan{ y'(x)}$。そこで,点Pにおける反射光線の傾きは,$m = \tan(\frac{\pi}{2} +2 \theta) = -\frac{\cos 2 \theta}{\sin 2 \theta} = \frac{y'(x)^2-1}{2 y'(x)}$となる。
さて,反射光線の方程式は,$Y-y(x)=m(X-x)$である。したがって,焦点の位置 を$(X,Y)=(0,f)$とすると,$f = y(x) - x \cdot \frac{y'(x)^2-1}{2 y'(x)}$という微分方程式で定まる。先ほどの,$y(x)=\frac{x^2}{4f}$はこの方程式を満足している。
0 件のコメント:
コメントを投稿