これら2つの例から考えると,テキスト型生成AIの教育利用のイメージの一つは対話型の本(以下プリマーAI)ということになる(結局,ニール・スティーブンソンのダイヤモンド・エイジに出てくるプリマーに帰着する)。デジタルテキストとして提供される本の場合,(1) 当該の本の本文テキストをコアとして,(2) 同じ著者による関連著書である著者テキストの集合,(3) 本文テキストと関連する主題テキストの集合,(4) "世界"全体の背景常識テキストの集合,に適当な重みをつけて学習させたLLMシステムを作る。利用者は,これに対して,ChatAIインターフェースで,対話しながら内容を読解していく。これに,(5) 対話・学習記録テキストの集合が追加できれば問題ない。
プリマーAIを教科書として利用する場合,対話しながら教科書の内容を理解することができる。つまり,解らない部分は,何度でも角度を変えながら「著者」に質問することができるというわけだ。この場合,教科書検定というか内容(対話部分を担う学習データ部分)の正確性はどう担保するのか。あるいは政治問題化するのか。
ある人の著書だけでなく,全会話記録や全テキスト記録をプリマーAIに入力すれば,その人の仮想人格と対話できることになるので,紙に書かれた文章の読解力がなくとも,著者との対話が実現してしまうことになる。教科書から話はそれるが,対話できるタレント・アイドル本みたいなものができてしまうのか。いいのか?
DeepLに加えてChatGPT+BingChatの魔の手からも逃れられなくなりつつある今日この頃。
0 件のコメント:
コメントを投稿