2020年4月30日木曜日

新規感染数の推移

5月6日が期限であった全国の緊急事態宣言が1ヶ月程度延長されそうであまり異論はないようにみえる。twitterで各国の新規感染数を比較しながらこの問題を検討している人がいた。自分でもやってみた。ただし時間軸は揃え,イタリア,英国,日本×5,スウェーデン×5を試しにやってみる。


 図 新規感染数の推移(3/12-4/29)(日本とスウェーデンは5倍した値)

日本のデータが信頼性に欠けているということはさんざん指摘されている。それでもなお日本は,英国の高止まりやスウェーデンの上昇傾向とは異なりイタリアのような下降線に近いようにみえてしまう。本当のところはどうなのだろうか。まだ予断を許さない。

2020年4月29日水曜日

9月入学

どうやら5月6日に緊急事態宣言を解除するのは難しいとわかってきて,目くらましと先延ばしと人気取りのために9月入学を声高に叫び始める維新や国民民主や首長たち。下手すると経産官邸族に唆されてアベノマスク氏も乗ってしまうのかもしれない。やめたほうがいいような気がするけど。やっぱり入学式には桜がないといけませんね。COVID-19の次の波がきたらまた半年づつずらすのかよ。東大が失敗した大学だけシフトはありうるとは思うけれど・・・。子どもたちの学習保障はそれはそれで別に考えるほうがよいと思う。このたいへんで不確定要因が多い時期に更なる混乱を招くだけだろう。むしろ,各大学が入試問題を従来のように作れるのか,大学院入試ができるのか,などが老婆心ながら気になるところ。

2020年4月28日火曜日

東京タワーとスカイツリー

テレビで(テレビの見過ぎ),東京タワーと東京スカイツリーが同じ高さにみえる場所を探すというのがあった。その場所を結ぶ軌跡は円になっていた。そうなのか。

原点に高さ$h_1$の塔を置き,$x=a\ (a>0)$の点に高さ$h_2\ (>h_1)$の塔を置く。$x$軸上には仰角が等しくなる点が2つあり,$x/h_1 = (a-x)/h_2$と$x/h_1 = (a+x)/h_2$を満たす点であり,$x=\frac{a}{1 \pm h_2/h_1}$ で与えられる。

次に点P $(x,y)$を考えて,この点からの仰角が等しくなるための条件を求めれば,
\begin{equation}
\dfrac{x^2+y^2}{h_1^2} = \dfrac{(a-x)^2+y^2}{h_2^2}
\end{equation}
である。整理すれば以下のように円の方程式が得られる。ここで,無次元の量 $c$を $c=(h_2/h_1)^2-1$と置いた。
\begin{equation}
\begin{aligned}
\bigl\{ ( h_2 / h_1 )^2 - 1 \bigr\} x^2 + 2 a x + \bigl\{ ( h_2 / h_1 )^2 - 1 \bigr\} y^2 = a^2 \\
(x + a/c)^2+y^2=a^2/c *\bigl( 1 + 1/c \bigr) = (a/c * h_2/h_1)^2
\end{aligned}
\end{equation}
中心の位置は先ほど$x$軸上に求めた2点の中点になっている。円の半径は$a/c * h_2/h_1$である。

2020年4月27日月曜日

有界な単調数列は収束する


大人の学び直し

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
○実数を項とする無限数列 $\{a_n\}$ を考える。すなわち,$n \in \mathbb{N}$,$a_n \in \mathbb{R}$ である。数列 $\{a_n\}$ の全ての項を要素とする集合を $A$ とする。すなわち,$A=\{a_1, a_2, a_3, \dots \}$ である。

○集合 $X$ が 上に(下に)有界 であるとは,$\forall x \in X \rightarrow x \le (\ge) M$ となる実数 $M$ が存在することである。この $M$ を $X$ の上界(下界) とよぶ。$X$ が上にも下にも有界であれば,$X$ は 有界 であるという。

○上界(下界)$M$ が $M\in X$ であるとき,これを $X$ の 最大値(最小値) という。

○上界(下界)の集合が空集合 $\emptyset$ でないとき,上界(下界)の最小値を $X$ の上限(下限) という。空集合ならば,上限(下限)を $\infty \ (-\infty)\ $ と表すことがある。

○なお,数列 $\{a_n\}$ については,その全ての項からなる集合 $A$ についての表現を流用して,数列に対して,有界,上界(下界),最大値(最小値),上限(下限)などの用語をあてはめることにする。

○数列 $\{a_n\}$ が有界ならば,$\forall n \in \mathbb{N} \rightarrow |a_n| \le M$ と表すことができる。

○数列 $\{a_n\}$ が 単調増加(減少) であるとは,すべての$n \in \mathbb{N}$に対して,$a_n \le a_{n+1}\ ( a_n \ge a_{n+1} )\ $ が成立することである。等号を含めない場合は, 狭義単調増加(減少) であるという。単調増加と単調減少の性質を持つ数列をまとめて 単調数列 という。

数列が収束する ことは次のように表現する。各項が実数である無限数列 $\{a_n\}$ がある。この数列が実数 $\alpha$ に収束するとは,つぎの関係が成り立つことをいう。『任意の $\varepsilon > 0$ に対して,ある自然数 $N(\varepsilon)$ が存在して,$n \ge N(\varepsilon)$ をみたす 任意の自然数 $n$ について $| a_n - \alpha | < \varepsilon $をみたす』

$\forall \varepsilon > 0,\ \exists N(\varepsilon) \in \mathbb {N} \ \mathrm{s.t.}\ \forall n \in \mathbb {N} \quad [\ n \ge N(\varepsilon) \Rightarrow | a_{n} - \alpha | < \varepsilon \ ]$

○「 有界な単調数列は収束する 」を証明するための前提としては,実数に関する次の公理が必要となる。すなわち,「上に(下に)有界な実数の部分集合には最小上界(最大下界)が存在する。

○証明は次のように進む。上に(下に)有界な数列 $\{a_n\}$ があるとすると,その最小上界(最大下界)を $\alpha$ とすると,すべての $n$ に対して,$a_n \le \alpha \ (a_n \ge \alpha)\ $ が成り立つ。

最小上界より小さな数(最大下界より大きな数) $\alpha \mp \varepsilon \ ( \varepsilon > 0 )\ $を考えると,この数と $\alpha$ との間には数列 $\{a_n\}$ の部分が存在する(存在しなければ, $\alpha$ が最小上界や最大下界ではないことになるから)。つまり,$\varepsilon$ を与えると定まる自然数 $N$ が存在し,それは,$a_N > \alpha -\varepsilon \ ( a_N < \alpha + \varepsilon )\ $を満足する。

○$\{a_n\}$ は単調増加(単調減少)数列なので,$n \ge N$ となる $n$ に対して,$a_n \ge a_N > \alpha -\varepsilon \ (a_n \le a_N < \alpha + \varepsilon)\ $である。一方,$a_n \le \alpha \ ( a_n \ge \alpha )\ $ より,$a_n < \alpha + \varepsilon \ (a_n > \alpha - \varepsilon )\ $ である。

○これらより,$n \ge N$ となるすべての $n$ に対して,$ |a_n - \alpha | < \varepsilon $ が成り立つ。したがって,数列 $\{a_n\}$ は $\alpha$ に収束する。これを次式のように表して,$\alpha$ を収束する数列の 極限値 という。
$\lim_{n \to \infty} a_n = \alpha$


2020年4月26日日曜日

COVID-19雑感(2)

昨日のものを再編してみた。

○ニューヨーク州の抗体検査による既感染累計が人口の14%というのはほんとうだろうか。
 (もしそうならモデルパラメタの前提がそもそも間違っている)

○スウェーデンの試み(ロックダウンしない)は成功するのだろうか。死亡数累計が人口の0.02%を越えて増加中である。スペインの0.04%よりは小さいが,増加率が・・・

○ブラジル,ロシアなどもじわじわと増えている。


図 欧州・米州の新規感染数累計の推移(人口の10ppm時点を原点)

2020年4月25日土曜日

COVID-19雑感(1)

徒然なるままに・・・

○日本は相変わらず情緒的な対処法で乗り切ろうとしている。正確なデータがないままに。

○シンガポールの新規感染数累計は,人口比で0.2%となり湖北省の0.1%を越えた。まだ収まる様子がみえないのだけれど大丈夫かしら(それにしては死亡数累計が少ない)。

○東京は,韓国・オーストラリアを越えてまだ収束先がみえない。日本全体も上昇中。
 (残念なことに,石川県と福井県が人口比で東京についで2位と3位なのだ)

○台湾,中国,韓国,香港は,第1段階が終息している。


○通常のインフルエンザと比較して問題なしとする正論?は正しいのだろうか。

図 アジア・太平洋の新規感染数累計の推移(人口の10ppm時点を原点)

2020年4月24日金曜日

原子核の周期表

京大の萩野浩一さんと前野悦輝さんが,原子核の周期表を考案し,三次元化したモデルを「ニュークリタッチ」(元素の周期表の三次元モデル「エレメンタッチ」の仲間)と命名したとの発表が京都大学からあった。

論文のほうは,A Nuclear Periodic Table で,Foundations of Chemistry に発表される。

いやー,かつてのシェルモデルユーザとしては盲点でしたね。なかなかおもしろく,教育的な価値もあると思う。

2020年4月23日木曜日

遠隔授業のばたばた(6)

遠隔授業のばたばた(5)からの続き

今日は1回生の「科学のための数学」の初回である。昨日は主に2回生でmoodleにも慣れている集団だったが,今日はどうだろうか。

受講登録者52名の内,45名が出席チェックを通過,46名がアンケートをクリアした。
自宅が44名,寮・下宿が1名,その他(どこやねん)が1名。デスクトップPCが1名,スマホが4名,41名がノートPCである。50GB程度は速度制限なしに利用できるが2名,上記より小さいかわからないが3名,41名が自宅のネットワークなどで無制限に利用できる。まあだいたい昨日と同じ傾向だった。

なお,高等学校で数Ⅲを履修していないものが,11名/46名と1/4あるので毎年のように授業の進め方が難しい。全員化学を選択しているが,物理は35名,生物は13名といったところ。

練習課題の提出でひとり手間取った。手順は次の通りである。

① スマホなどで課題を撮影した写真を PC に取り込む。
② PowerPoint に上記写真ファイルを貼る。
③ 写真を選択した状態で,書式→図の圧縮 または 図の書式設定→圧縮 を実行する。
 (最小のメールサイズにして下さい)
④この PowerPoint ファイルを koshigiri-k-0420.pptx のように名前を付けて保存。
⑤ koshigiri-k-0420.pptx を pdf ファイルとして出力し moodle の課題提出箱に提出する。

これをチャットで手取り足取り教えることになった。なかなかハードルの高い道のりである。

2020年4月22日水曜日

遠隔授業のばたばた(5)

遠隔授業のばたばた(4)からの続き

いよいよから今日から自分の最初の授業「古典力学(前期水曜2限)」が始まった。とりあえず用意したものは,moodleのページとOneDriveに置いた音声付きノート3ページ(各10分≒10MB)である。

moodleのページの段取りは以下の通りである(学生は自己登録でゲストアカウントも可にしている)。学年暦の都合で次回は今週の土曜日にやってくる。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
第1回  オリエンテーション(4/22水)

学生からの質問箱
 質問や意見はこちらにどうぞ。

第1回出席チェック
 出席チェックが終わったら受講生アンケートに進んで下さい。

受講生アンケート
 受講生アンケートが終わったらチャットルームを試して下さい。

第1回チャットルーム
 授業時間中はここでも質疑応答を受けます。

第1回の講義内容
 この中のファイルを視聴して下さい。

練習課題の提出ボックス
 練習課題を本日中に提出して下さい。
 練習課題「ノートに自分の学籍番号と名前,今日の感想(数行)を書いたものを撮影し,pdfファイルにして提出する」

第1回の課題を提出
 第1回課題は次回(4/25土)までに提出してください。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10時半をすぎると出席チェックが増え出した。結局36名の受講者全員が出席チェックしている。チャットルームはほとんどみんな通りすぎていく。質問が2,3件あった。
アンケートは匿名であったがほぼ解答している。通信環境不明が2名,5G以下が3名,50G以下が1名,他は無制限だ。受講場所は,寮・下宿が3名で,他は自宅だ。端末はスマホが8名,タブレットが1名,デスクトップPCが1名,他はノートPCだ。高校で数Ⅲを履修していないものが6名いた。

練習課題がなかなか集まらない。授業終了の12時ごろで1/3,13時をまわったところでようやく半数だったので,moodleのアナウンスメントを使って全員にメールによるお知らせをして,困った場合は申し出るようにする。

まあ,第1回なので評判はそこそこであった。しかし準備にかなりの時間がとられてしまうのが難点である。このままいつまで続けられることだろうか。でも,授業としてはこの形態のほうが望ましいとも思えた。反転授業に大きくかじ取りすべきかもしれない。

P. S. 夕方,zoomによる全学説明会があった。オンライン授業は5月末まで延長というか,実技・実験・実習科目以外は基本オンライン授業でということだ。問題は,中国留学生,期末試験,実習などだろうか。いまのところmoodleの負荷問題は深刻化していない。

2020年4月21日火曜日

ウルフラムの物理

Stephan Wolfram の "A Class of Models with the Potential to Represent Fundamental Physics" がarxiv.orgに投稿されていた。440ページもあるぞ。
A class of models intended to be as minimal and structureless as possible is introduced. Even in cases with simple rules, rich and complex behavior is found to emerge, and striking correspondences to some important core known features of fundamental physics are seen, suggesting the possibility that the models may provide a new approach to finding a fundamental theory of physics.
可能な限り最小で構造のないモデルのクラスが紹介されている。単純なルールの場合でも,豊かで複雑な振る舞いが現れることがわかり、基礎物理学の重要な核となる既知の特徴との顕著な対応が見られ、このモデルが物理学の基礎理論を見つけるための新しいアプローチを提供する可能性を示唆している。
目次は次のとおりである。
 1. Introduction
 2. Basic Form of Models
 3. Typical Behaviors
 4. Limiting Behavior and Emergent Geometry
 5. The Updating Process for String Substitution Systems
 6. The Updating Process in Our Models
 7. Equivalence and Computation in Our Models
 8. Potential Relation to Physics
    Additional Material
    References

発売予定のハードカバー,A Project to Find the Fundamental Theory of Physics(816ページ)のドラフトかと思ったけれど,そうではなかった。WolframのA New Kind of Science から続いている思想の延長線上にある。たぶん,大学に入る前に新聞でカタストロフィーの理論をみて,わーこれはすごい!と思ったが,実際のところはそうでもなくてちょっと残念だったのに近いのではないかと予想しているのだけれど。それでもちょっとワクワクする。

[1]A Class of Models with the Potential to Represent Fundamental Physics(上記のオンラインバージョン)

2020年4月20日月曜日

遠隔授業のばたばた(4)

遠隔授業のばたばた(3)からの続き

4月20日,いよいよ今日からはじまった。ただ,こちらから観測されている範囲では大きなトラブルはない。教務システムUNIPAも学習管理システムmoodleも無事に動いているようだ。もっとも,現場は学生からの質問で大わらわ状態のようだが。

現時点でmoodleに登録されている授業で検索にかかった主なものは下記のとおり。
   1限  2限  3限  4限 5限 6限 7限  合計
月曜 14  18  23  16  5  8  4  88
火曜 13  23  18  18  3  5  6  86
水曜 10  17   0   1  0  5  4  37
木曜 10  28  26  16  4  1  4  89
金曜 13  21  19  17  6  2  3  81
合計 60 107  86  68 18 21 21 381

うーん,大丈夫なのだろうか。

2020年4月19日日曜日

遠隔授業のばたばた(3)

遠隔授業のばたばた(2)からの続き

大阪府立大学の講義動画作成法のYouTubeがなかなか参考になった。田崎晴明さん方式 にしようかどうしようか。そこで,各種方法をまとめてみると次のようになる。
  1. 講師動画&板書動画(1ファイル)(300MB/45分)
  2. 講師音声&板書動画(1ファイル)(200MB/45分)
  3. 講師音声&ノート画像(1ファイル)(100MB/45分)
  4. 講師音声,ノート画像(2ファイル)(10MB/45分)
それらの作成方法は以下のようになる。
  1. zoomの講義録画   → a
  2. zoomの画面共有録画 → b
  3. QuickTimeの録画機能 → c
  4. PowerPoint/Keynoteの録画機能 → c
  5. iOSの録音機能+手書きアプリ → d (→ c FFmpegで編集:50MB/45分)
データ容量としては d. が有利であるが2ファイルを扱う手間がやや心配。

むしろ問題は学生からの課題回収のほうである。大学からはmoodleサーバ保護の観点から,テキストなどなるべく軽いデータで課題を出させよとのお達しがきた。A4プリント1枚の解答をスマホの写真で撮れば2MB程度になるので,50人のクラスでは100MB/授業1回となる。2000クラスで15回の授業を行えば3TBとなる。うーん,なかなか微妙なラインではある。写真をpdf化することに負担もあってどうしたものか思案のしどころ。
(こんなことばかりしていて肝腎の授業ノートが1ミリも進んでいない・・・orz)

P. S. 課題の画像ファイル(2MB)は,PowerPointに貼り付けて画像圧縮(メールサイズ)にしてpdf出力すれば,100KBのオーダーに抑えることができた。

2020年4月18日土曜日

遠隔授業のばたばた(2)

遠隔授業のばたばた(1)からの続き

今日も朝からmoodle支援を2件すませた。昼からは国立情報学研究所(NII)【第4回】4月からの大学等遠隔授業に関する取組状況共有サイバーシンポジウム(4/17オンライン開催)に大阪教育大学の尾崎君が登場するようなので,さっそくアクセスすべくCiscoのWebexやブラウザエクステンションをインストールするなどの準備を行う。

画質と音質はだいぶ落としていたけれど,内容はかなりおもしろかった。とくに尾崎君の「オンライン授業実施に向けた個別サポートデスクの実施体制の構築とその運用」は,実用的でシンプルで汎用性も高いので,喜連川先生もほめていた。

そんなわけで,昨日に続いて試行錯誤が続いている。神戸高校の杉木勝彦先生(大阪教育大学理科教育専攻物理の稲垣研出身)が,遠隔授業用の教材作成に取り組んでいる。iPadのGoodnotesで作成した静止画に,コントロールセンターで有効にした画面収録機能を使って,音声を重ねるというものである。まず,ターゲットとなるノートを開いた状態でコントロールセンターを呼び出して画面収録をオンにする。説明のお話が終わったところで録画中ボタンをタッチして終了する。これにより写真のところに収録された動画がmp4形式で保存された(毎分7.5MB程度か)。

もう少し軽くならないかと検索しまくったところ,FFmegを使って,静止画と音声ファイルから動画を作るというのがあった。四苦八苦してあれこれ試したところ次のようにするとうまくいくことがわかった。結城浩さんのおかげである。

静止画(img.jpg)と音声ファイル(snd.m4a,iPhoneのボイスメモで収録)を使って,mp4ファイルを作るには次のようにする(-pix_fmt yuv420pがミソだった)。
  ffmpeg -loop 1 -i img.jpg -i snd.m4a -ab 24k -vb 72k -c:v libx264 -pix_fmt yuv420p -shortest out.mp4
また,2つのmp4ファイルを結合するには次のようにする。
 ffmpeg -safe 0 -f concat -i mylist.txt -c copy out3.mp4
ただし,mylist.txtには結合前のファイルを並べておけば良い。
 cat mylist.txt (out?.mp4は同じコーデックで作ったファイルであること)
 file ./out1.mp4
 file ./out2.mp4

あとはコンテンツだ。熊本大学の鈴木克明さん(昔,日本文教出版の高等学校の情報の洋教科書でいろいろお世話になった。今,日本教育工学会の会長になっておられた)が上のシンポジウムで指摘していたように,無理せずにゆるゆると真の目的を見据えながらやるのがよろしいようだ。

遠隔授業のばたばた(3)に続く








2020年4月17日金曜日

米国の集団免疫率(2)

米国の集団免疫率(1)からの続き

トランプは4/17の会見で米国におけるCOVID-19の死亡数は6〜6.6万人にとどまるとした。これは勝手な想像ではなく,IHMEの最新の予測である。前回の10〜25万人から減少させたことを自分の政策の成果であるかのようにアピールしつつ,ロックダウンを解消して経済回復を誘導しようという意図に基づくものだろう。

前回のSIIDR2モデルの適用はちょうど2週間前だったので,あらためてこのモデルと上記の主張を組み合わることで米国の集団免疫率を推定してみる。前回のように1ppm到達の基準日3/10から4/17までの39日分の新規感染数累計と死亡数累計の人口比データを示す。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
xa=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38]
ya=[0.014,0.021,0.030,0.038,0.051,0.051,0.051,
0.106,0.107,0.215,0.317,0.462,0.462,0.958,
1.280,1.576,1.929,2.074,2.587,3.136,3.722,
4.268,4.953,5.684,6.483,7.335,8.310,9.327,
10.13,11.03,11.99,12.93,14.00,14.96,15.92,
16.81,17.55,18.33,19.20]
za=[0.06,0.08,0.09,0.11,0.12,0.12,0.12,
0.18,0.18,0.30,0.46,0.61,0.61,1.22,
1.43,2.04,2.68,3.01,3.77,5.06,6.41,
7.28,8.65,11.7,14.6,17.8,21.3,25.4,
29.0,32.9,38.7,44.5,50.4,56.2,62.0,
66.7,71.2,78.5,85.6]/100
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

SIIDR2の計算において次のパラメタを用いると上記の米国のデータが再現できる。
$\beta = 0.60, \nu =0.12, \lambda=28, \tau=16$, $\alpha_1=5/0.80, \alpha_2 = 5/0.20$, $\gamma_1 = 15/0.95, \gamma_2 = 15/0.06$。前回と異なり,$\gamma_2$の値は,中国や韓国などを説明した値の方にややに戻している。

 図1 米国の感染カーブ(u3=重症感染数,u4=死亡数,u6=新規感染数累計)


図2 米国の感染カーブ(同上,u5=回復(免疫獲得)数)

① 米国では重症感染数のピークを迎えている。
② 最終的な死亡数は6〜7万人程度になる。
③ 第1回目の終息が想定される2ヶ月後の集団免疫率は1〜2%のオーダーである。






2020年4月16日木曜日

遠隔授業のばたばた(1)

今,日本中の大学教員が試行錯誤の真っただ中にいるはずだ。Facebookの「新型コロナ休講で,大学教員は何をすべきかについて知恵と情報を共有するグループ」には今日現在で15,000人以上が登録している。令和元年度の学校基本調査では,大学教員の数は19万人弱なので,その8%程度に相当する。なかなか壮観だ。

私も,大阪教育大学で使われてきたmoodleの利用支援の猫の手として活動をすることになった。4月20日からインターネットを活用した授業がはじまるので待ったなしだ。通常の対面授業は5月11日(月)から再開する予定だが,今後の感染拡大の状況によっては,感染拡大防止期間を延長し,引き続きインターネットを活用した授業等を行うということなのでますます大変である。通年で3800科目あるうち前期が半分だとして1900科目,そのうち1100科目のコースがmoodle上に観測された。約6割に相当する。実験・実習・演習科目などもたくさんあるので,これらがどうなるのかは心配だ。

さて,自分が前期に担当する演習・実験以外の授業は3科目(古典力学・科学のための数学・電磁気学)だ。moodleのコースの枠組みは3回分作成したが,問題はコンテンツである。とりあえず,ギガに優しい田崎晴明さん方式でやることを想定している。写真にとって pdf化したノートと,iPhoneもしくはiPadで録音した音声データは,MicrosoftのOneDriveに置くことにする。なお,m4a音声データは,次のようにmp3に変換する予定である。

  m4aからmp3への変換
   ・Apple Music App を開く
   ・メニューバーで「ミュージック」>「環境設定」の順に選択
   ・「ファイル」タブをクリックし、「読み込み設定」をクリック
   ・「読み込み方法」の横のメニューをクリックし、曲の変換先の
    エンコード形式を選択,「OK」をクリック
   ・キーボードの「option」キーを押しながら「ファイル」>「変換」>
    「[環境設定で指定した読み込み方法]に変換」の順に選択
   ・読み込んで変換したい曲が入っているフォルダまたはディスクを選択
    変換前の形式の曲と、変換後の曲がライブラリに表示

それでもなお,板書形式が可能かどうかを模索している。
① Notabilityがよいということだったが,OneDriveに置こうとして撥ねられた。
② Goodnote5と画面記録がよいということで,画面記録アプリをさがしたところ,
 DU-Recorder(App内課金が高額),ApowerREC(機能しませんでした)があった。
③ iPadとMacを有線で結んで,Mac側のQuickTimeで録画先をiPadに指定して録画する
 方法があった。これはうまくいった。ただ,45分で200MBを越えるのでどうするか。
④ この場合でも,NotabilityよりはGoodnote5のほうがなんとなく使いやすそうである。
⑤ PC側のzoomの録画の方が便利ではないか,ということで,上記の設定をzoom側で
 保存してみたところ,終了時に録画ファイルをm4aに変換してくれた。まあまあ。
試行錯誤は続く・・・というかもうあまり時間が残されていない。

遠隔授業のばたばた(2)に続く


2020年4月15日水曜日

モビリティデータ

Appleが,新型コロナウイルス感染症(COVID-19)拡大防止に向けた世界各地での活動を支援するため,Appleマップによるモビリティデータの傾向を示すデータ(Apple Maps Mobility Trends Reports)を提供した。

しばらく前にはgoogleも同様のデータ(COVID-19 Community Mobility Reports)を公開していた。例えば日本の時系列はpdfファイルとして提供されている。このデータを再構成して,4月5日の時点でのいくつかの国の特徴を比較したものが次の図である。
図1 グーグルモビリティトレンドからの4/5の傾向(平常時との比率)

アップルの方は,上方の種類は限定されているが,時系列のCSVデータも提供されていてありがたい。ここではその結果だけを例示してみよう。

図2 日本のモビリティトレンド(1/13-4/15)

図3 韓国のモビリティトレンド(1/13-4/15)

日本の3月下旬の緩みがはっきりと現れている。まだまだ活動制限のレベルは不十分であり,西浦博さんがあせって,重篤者85万人,死者40万人という発表を(遅すぎると思うが)したのもわからなくはない。しかし前提条件がよく理解できないのだ。例えばNHKのニュースでは,以下のような説明があったが・・・
外出自粛などの感染防止対策を何も行わなかった場合、感染が広がり始めてからおよそ60日でピークを迎えると推計しています。
その場合の重篤な患者は合計で▽15歳から64歳まででおよそ20万人、▽65歳以上で65万人の合わせておよそ85万人に上るとしています。
その場合、人工呼吸器が足りず、必要な治療が受けられなくなり、中国でも重篤患者の半数が死亡しているという研究があるということで、日本国内でも半数にあたるおよそ40万人以上が死亡すると推計しています。
いずれにせよ,相変わらず安倍政権支持率は40%の水準を維持しており,日本の政治はびくともしていない。


2020年4月14日火曜日

基準の変更と比較

アジアの状況欧州の状況,からの続き

アジア太平洋と欧州・北米の新規感染者数累計を人口で規格化したグラフを考えてきた。これを並べて比較してみる。これまでは基準を人口の1ppmを越えた時点としてこれを各国の共通の原点とした対数グラフを考えた。その基準点を人口の10ppmになった時点に変更して比べてみる。累計数がかなり増加してきたため,最近の特徴をよく観察したいと思ったので。

図1 アジア・太平洋地域の新規感染数累計対人口比の推移(100ppm)

図2 欧州・北米地域の新規感染数累計対人口比の推移(100ppm)

イランは比較のために両方のグラフに含めている。欧米はすべてイランを上回っている。グラフで示した欧米主要国の新規感染数累計は人口比ではすでに湖北省を越えているわけだ。しかし,アジアでは震源地の中国湖北省以外はすべてイランの水準を下回っている。

①欧米は同じ傾向で推移している。指数関数的増加の時定数がしだいに減りつつある
②アジアは,中国が既に収束し,韓国がこれに続いている。
③オーストラリア,香港,マレーシアも減速の兆が見える。
④台湾は一貫して低水準に押さえ込んでいる。
⑤シンガポールは当初,台湾や香港と並んだ優等生だったが,その後抑え切れていない。
⑥日本(東京)は,ほぼ一定の時定数での指数関数的な増加を続けている(新規感染数累計は1.107倍/日,死亡数累計は1.046/日の割合で増えている)。

もし,この定数が変化しなければ,緊急事態宣言の期限である5月6日には日本の新規感染数累計は6万人に達する。これは人口比で500ppmであり,韓国の200ppmや湖北省(武漢以外)の370ppmを超える水準に相当する。また,このときの死亡数は260人程度にとどまり,そのまま推移すれば,死亡数(5/6の21日後)/新規感染数累計(5/6) = 1%というリーズナブルな値が得られる(感染数と死亡数の間に21日程度の遅れがあると仮定している)。

2020年4月13日月曜日

欧米の状況



欧米の状況を見ると新規感染数累計は人口比で10ppmを越えているところがある。スペインの30ppmは湖北省(武漢以外)の10倍近い水準であり,下記の国々の新規感染数累計をはすべて湖北省(武漢以外)以上の値となっている。ただし,対数グラフ上は上に凸となっていて増加率は減少に向いつつある。


図1 人口当りの新規感染数累計(単位100ppm,基準日は1ppm達成時)


図2 人口当りの新規感染数累計の対数(単位100ppm,基準日は1ppm達成時) 

2020年4月12日日曜日

アジアの状況

新型コロナウイルス感染症の感染者数の増加が5/6には収まるように考えている人が多いのかもしれない。うまくいけば7月には一端終息に向ったようにみえる可能性もある。しかし,集団免疫が獲得できずワクチンもない現状では,緊急事態宣言レベルの制限を継続するか,断続的に緩めたり強めたりすることの繰り替えしかの二択ではないだろうか。中国以外で終息に近い状態を実現しているのは台湾だけだ。それに近いのは韓国。香港もシンガポールも完全にはおさまっていない。どこまで耐えられることか。

図1 人口当りの新規感染数累計(単位100ppm,基準日は1ppm達成時)

図2 人口当りの新規感染数累計の対数(100 ppm,基準日は1ppm達成時)

注:上記は武漢を除いた湖北省の値であり,370ppmに収束している。武漢を含めた湖北省の収束値は1150ppmであり,上記の3.1倍に相当する。湖北省の全体イメージは湖北省(武漢以外)を全体に3倍程度スケールしたものと考えられることに注意する。

2020年4月11日土曜日

zoom

よくわからないまま,zoom を使った moodle による遠隔教育の設定支援要員に駆出されることになってしまった。手元のMacbookは古いので(2.5GHz Dual Core Intel Core 5i )背景が設定できなくて悲しい。自分のコースさえまともに完成していないのに大丈夫なのかな。猫の手も借りたい逼迫した状態にあることは間違いない。