2023年8月18日金曜日

教育と倫理(2)

教育と倫理(1)からの続き

そこで次のような問いを,最近バカになってきているとあまり評判が芳しくないGPT-4(August-3)に投げてみてた。

Q:User
教室全体の様子を赤外線カメラにおさめて,学生や生徒が居眠りしているかどうか(個人までは識別しない)をAIによって(深層学習システムを用いて)画像解析し,これを授業改善に結びつけるシステムの開発に成功したという教員養成系大学の研究グループからの発表がありました。

これに対して,賛否両論があって議論が盛り上がっています。教育工学あるいは教育倫理学の立場から,このシステムの可能性をどのように評価すべきでしょうか。あるいはどのような問題点を抱えているでしょうか。具体的に箇条書きによって解説してください。
 
A:ChatGPT
このようなシステムには確かに多くの可能性がありますが、同時に多くの問題点も考慮する必要があります。教育工学や教育倫理学の視点から考慮すべきポイントを以下に箇条書きでまとめます。

可能性

1. 授業改善:生徒の反応をリアルタイムでキャッチすることで、教師が授業の内容やペースを調整する手助けとなる。

2. データ駆動の教育:長期的なデータ分析により、特定のテーマや時間帯に生徒の興味が低下する傾向などを発見できる。

3. 個人情報保護:個人を識別しないシステムであれば、プライバシーの懸念が少なくなる可能性がある。

問題点

1. プライバシーの侵害:個人を識別しないとしても、生徒の行動を監視することはプライバシーの侵害と見なされる可能性がある。

2. 圧力とストレス:このようなシステムが導入されると、生徒が常に監視されていると感じることでストレスを感じる可能性がある。

3. 評価基準の偏り:居眠りをする生徒が授業に興味がないとは限らない。体調や前夜の睡眠不足など、多くの要因が考慮されるべきである。

4. 技術的誤検知:AIの誤検知や技術的な制約により、正確なデータが得られない場合が考えられる。

5. 教育の本質:授業の質を生徒の居眠りの有無で判断することは、教育の本質から逸脱する恐れがある。

6. 倫理的な問題:教育現場での技術導入は、その目的や手段が明確である必要があり、適切なガイドラインや枠組みのもとで行われるべきである。

以上のように、このシステムの導入には様々な側面が考慮される必要があります。教育現場での技術の利用は、その利点とリスクを十分に評価し、関係者全員の合意のもとで慎重に進めることが求められます。

2023年8月17日木曜日

教育と倫理(1)

ことの発端は,8月3日の大阪教育大学の記者発表である。

その内容は,サーマルカメラのAI画像分析によって,生徒の活動状況(寝ているかどうか等)を判別して授業改善に利用しようというものだ。NHKの関西版ニュースにも「授業中の居眠りをAIで検出,大阪教育大学がシステム開発」として取り上げられていた。このご時世なのでなんであれ,大学がニュースに取り上げられるのは結構なのですが・・・。

さっそく反論があった。最も本質的なものの一つが,豊福晋平さんのFacebookのコメントツリーの中にある彼自身の発言だ。
テクノロジーは道徳のない増幅機である
学習者の学びを支えたいのか、それとも、相手の行動を好き勝手にコントロールしたいのか、テクノロジーは人の欲望をグロテスク化させる。 
この事例は開発者のかなりアレな学習観を暴露していて痛快ですらあるのだが、もっと踏み込んで言えば、大学広報として公式に扱う以上、組織の教育・学習観も所詮その程度のものということだ。

・・・途中のレスにもあったように、彼らの価値観は教師主導の授業改善がベースで(朝日新聞にはそう説明したんでしょう)、実はそこにあるデータ所有の非対称性や恣意的な解釈・権威付けが批判されているのに、それに気付けない。問題はそこにあります。

研究だから何でもイノセントでよいわけではなく、その背景や価値の方向付けにはこと自覚的であるべきで、倫理的・社会的にそれが許容されるのか否かについては余計に慎重であらねばならない、ということですね。 

これはぜひ覚えておいて欲しいのですが、学習者視点の欠如はかなり深刻な問題です。

データの取得・分析・フィードバックが学校のような非対称の関係性のなかで行われれば、インフォームドコンセントの欠如、データの強制取得、データの恣意的運用による不利益が生じる可能性があります。これはテストデータや学習履歴についてもまったく同じです。

学習者側の直接的なメリットがあること、データハンドリングを学習者当事者に任せることが条件になると思います。一方的にデータを吸い上げて授業改善は理由になりません。


一方,その他の様々な批判に対してFacebookの仲矢史雄さんは次のように語っている。
教育改革は教師だけの責任にしたり、学生の努力不足と決めつけてはならない。
本当に改善を進めるためには、客観的な観察と記録が必要で、これは細部にわたる長時間の作業を要求する。 
これまでは人間がその役割を担ってきたが、その作業負荷は大きすぎた。
現代の技術を活用して、これらのプロセスをデータ化することが望まれていた。
それは表面的な応用ではないという理解が必要だ。 
だれが特に居眠り検出装置のような短絡的な目的のためにこれを作るのだろうか。もし居眠りするのであれば、それはその人に居眠りする理由が存在するのだ。しかし、今回の取組が報道によって、分かりやすい部分だけ切りとられることは、メディアの性質として避けられない現実。 
もし私たちのプロジェクトがそのような切り取り方で紹介されることを嫌がるのであれば、情報を公開しなければいい。しかし、新たな取り組みが他の人々に利用されるためには、予想外の解釈をされる可能性を理解した上で、腹をくくって情報を公開しなければならない。道のりは遠い。

お二人ともを良く知っているだけになかなか考えさせられる。

仲矢さんは昔から附属で表情分析システムのようなことをやっていて,そのころの自分は深く考える前に「なかなか面白いですね」と応援していた。ただ,今回のシステムがどれほど価値があるのかはよくわからない。日立の研究者によるウェラブルセンサーによる長時間動作解析の可能性については,何年か前に読んだことがあって,たいへん面白いと思ったことがあるのだが。

自分が40-200人規模の大学の授業で「サーマルカメラシステム」を使えるとなったときに,果たして使うだろうか。居眠りしているかどうかは学生をみればわかる。授業のどの場面で集中が切れるかを細かく分析してなくとも,ある程度は直感的に全体像をつかみながら,テーマの選択や話の展開の改善にはぼんやりとつなげていた。いらないかな。

これがウェラブルセンサーであって,普通は見えにくい学生の活動情報を収集できるというのであれば,ちょっと面倒だが試そうと思ったかもしれない。しかしその場合,取得データを評価と結びつけたいという誘惑から逃れる自信はない。さらに,自分が大学管理者の側に立ったときに,これを教員の教育評価と結びつけようと積極的に主張し始めるかもしれない。地獄に続く道への第一歩。

豊福さんの「テクノロジーは人の欲望をグロテスク化させる」というのは自分に当てはめてみるとよくわかる。

2023年8月16日水曜日

空間ID

空間IDとは,経済産業省が整備を進めているデータ規格で特定の場所や地物情報を一意に識別するための識別子だ。

現実の空間を「ボクセル」と呼ばれる3次元空間を直方格子状に分割した直方体で区切り,その一つ一つに,地理的な座標や静的な情報(建物や設備データなど),動的な情報(気象情報や人流データなど)を紐付けた固定のIDを付与することで,特定の空間の情報を一意に識別する。

ボクセルのサイズを1辺50cmの立方体とする。日本の面積が37万㎢で,海まで含めてその3倍の面積100万㎢を考え,高さ9km深さ1kmの体積を考えると,10^7立方キロメートル= 10^16㎥なので,ボクセルでいうと,10^17ボクセルになり56ビットで表現できる。

でも実際はそんな単純なスキームではなくて,もう少しややこしいことになっているようだ。一方,総務省はG空間というものを提起していたけれどどうなのか。

2023年8月15日火曜日

ビジネスと人権

7月24日から8月4日まで,国連連合人権理事会による「ビジネスと人権」ワーキンググループの訪日調査が行われた。

最終日に日本記者クラブで記者会見が行われた。70分の説明の後,30分ほどの質疑応答があったけれど,申し訳程度に1件だけダミーの質問があった以外は,すべてジャニーズ事務所セクシャルハラスメント問題に費やされていた。なんなのだろう。

実際には,訪日調査の速報は下記引用部のような配分になっていた。()内は当該節の文字数である。

つまり,ジャニーズ問題より多くの部分が,技能実習生制度(雇用主による度重なるヘイトスピーチなど,韓国人・中国人労働者に対する外国人差別の事例を含むや,自然環境=東京電力福島原発の廃炉作業に関わる多重下請けと強制労働の問題に費やされていた。さらに,福島原発の処理水の排出と米軍基地周辺におけるPFASも取り上げられている。

リスクのあるグループとして最初に取り上げられているのは,女性とLGBTQI+の話題であって,日本会議や統一教会と強く相互作用している自由民主党宗教右派が頑強に抵抗しているテーマであった。なお,ジャニーズ問題を含むメディアとエンターテインメント産業の項でも女性記者に対するハラスメントや差別が言及されている。

最初に,GPT-4のプラグインを使ってこの英文報告ファイルを読み込んで要約させたが,どうもおかしいので原文を確認したところ,その要約は全く的を外していた。それで,DeepLに和訳させて下記のデータを整理したのだけれど,実は,報告の日本語版もちゃんと存在していたのだった。
国連ビジネスと人権作業部会訪日ミッション(7月24日~8月4日) (14160)

【1】はじめに(1084)

【2】日本におけるビジネスと人権の一般的背景(5140)
2−1 人権を保護する国家の義務(1193)
2−2 人権を尊重する企業の責任(3766)
2−3 救済へのアクセス(2088)
・国家に基づく司法メカニズム(528)
・国家に基づく非司法的苦情処理メカニズム(777)
・国家を基盤としない苦情処理メカニズム(705)

【3】利害関係者グループおよび問題関心分野(6605)
3−1 リスクのあるステークホルダー・グループ(2804)
(1)・女性(565)
(2)・LGBTQI+(467)
(3)・障害者(514)
(4)・先住民族(632)
(5)・部落(457)
(6)・労働組合(117)
3−2 テーマ別分野(3451)
(1)・健康、気候変動、自然環境(1662)
(2)・技能実習生訓練プログラムと移民労働者(927)
(3)・メディアとエンターテインメント産業(804)

【4】結論(825)


図:ビジネスと人権の関係(ヒューマンライツ・ナウから引用)


2023年8月14日月曜日

LK-99

7月22日にarxivで公開された常温常圧超伝導の話題が,8月に入るとすぐ盛り上がっていた。

LK-99 が,常温常圧超伝導を示すといわれる物質名である。話題の論文の筆頭著者(化学者)である,S. Lee (李石培 이석배) と J-H. Kim (金智勳 김지훈) が1999年に発見した。六方晶系の鉛アパタイト(Pb10(PO4)6O) の鉛のいくつかを銅で置換したものであり,論文には登録商標マーク(LK-99®)があって,特許も取得している

中央大学の田口善弘さんが,arxivに上がっているプレプリントのクオリティをディスっていた。もしかするとその一部は著者らの専門が化学であって物理分野とは違う文化であることに起因するのかもしれない。物質名(通称)の命名方法(著者名イニシャルを含める)とか登録商標についてもそのあたりなのだろうか。

追試過程の報告があちこちからでているが,ネガティブなものと気持ちポジティブなものが混在していて,いきなり全否定というわけでもないようだ。例の常温超高圧超伝導の件よりは少しマシかもしれない。なお,このグループは2020年にNatureに同趣旨の論文を投稿しているが不採用だった。さらに,今回の論文を巡っては著者グループ間には微妙な確執があるとかないとかいう話だ。

この実験を受けて,理論サイドでは,密度汎関数理論(DFT)などの第一原理計算によるシミュレーションがなんらかの可能性を示唆するという論文が続出している。LK-99がだめでも新しい物質の可能性があるのではないかという楽しげな雰囲気も漂っている。まあどんなケースでもそれらしい理論は作れてしまうというのが世の常なのだけれど。

1986年の高温超伝導フィーバーのときは,物性実験の人達がこぞって乳鉢で材料を調整し,論文を書いていたが,そのときの熱気に近いものが立ち上がりつつある。YouTubeの浮上実験の動画を見て,単なる反磁性だという説とか反磁性だとしてもすごいのではないかという説が入り交じり,DIY素人が実験に参戦しつつあるらしい

なお,最新の変化しつつある情報は,英語版WikipediaのLK-99に詳しい。



図:高温超伝導の歴史(Wikipediaから引用)

P. S.  8月第2週に入って,400Kにおける抵抗値の減少が不純物のCuSの1次相転移によるものであり,浮上は強磁性由来だということで決着しそうな気配がただよってきた。祭りは終了。


2023年8月13日日曜日

模擬原爆

先週の8月6日は78回目の原爆忌だった。

1945年7月,広島や長崎(予定では小倉,もしくは候補としての新潟)に原爆を投下するための実験や訓練のために模擬原爆(パンプキン爆弾)が日本に多数投下されたというニュースがあった。もしかすると,1973年の夏の旅行で訪れた広島平和記念資料館で展示を見たかもしれないが,全く記憶から消えていた。
パンプキン爆弾は,「原爆投下に備えた爆撃機乗員訓練のためと,今までに例のない特殊な形状をしたファットマン(引用注:長崎に投下されたプルトニウム爆弾)が爆撃機(原爆搭載が可能なように特別に改修したB-29)から投下され爆発するまでの弾道特性・慣性能率等の様々な事前データ採取のために,いわば「模擬原爆」として製作された。」(Wikipediaから引用)
平和祈念資料館によれば,「1945年(昭和20年)7月20日から8月14日までの間に49発が投下され、1,600人以上の死傷者が出ました。」ということであり,8月9日の長崎の後も続いていた。模擬原爆投下の目標とされたのは,当初の原爆投下候補地だった京都市,広島市,新潟市,小倉市の各都市を含む4つのエリアに分けた周辺都市である。例えば,富山市には4発も投下されていた。


図:模擬版段の投下(西日本新聞から引用)

[1] もう一つの「原爆」大阪に落とされた模擬原爆(大阪日日新聞)
[2]模擬原子爆弾投下跡地之碑(大阪市東住吉区)

2023年8月12日土曜日

(夏休み 12)

祖父・祖母・男孫・女孫
 할아버지(halabeoji) 할머니(halmeoni) 손자(sonja) 손녀(sonyeo)

2023年8月11日金曜日

(夏休み 11)

兄・姉・弟・妹
현(hyeong) 누나(nuna) 남동생(namdongsaeng) 여동생(yeodongsaeng)

2023年8月10日木曜日

(夏休み 10)

父・母・息子・娘
아보지(aboji) 어머니(eomeoni) 아들(adeul) 딸(ttal)

2023年8月9日水曜日

2023年8月8日火曜日

2023年8月7日月曜日

2023年8月6日日曜日

2023年8月5日土曜日

2023年8月4日金曜日

2023年8月3日木曜日

2023年8月2日水曜日

2023年8月1日火曜日

2023年7月31日月曜日

コーシー=シュワルツの不等式


数理統計学を真面目に勉強してこなかったのでいろいろ不都合が生じている。統計的因果推論とか深層機械学習とか量子測定理論とか,簡単に読み砕けない資料がたくさんたまる。

授業で扱った最小二乗法と実験誤差の話を整理しようとしても,背景には数理統計学が控えている。昔,阪大の南園グループによるベータ崩壊の実験と我々の理論を突き合わせたときに,χスクェアフィットの計算を散々繰り返したけれど,所与の公式を使うだけであってその理論的根拠をつきつめて考えたはしなかった。

そこで最初から勉強を始めようとすると,いきなり確率変数でつまづくのだった。コンピュータプログラムのサブルーチンや関数のようなものだと思えば納得できるといえばいえるのだけれど,自然言語と数学的記号を使って理解しようとするとなかなかその本質がつかみきれない。入門書は沢山あるけれど,どれも何だか気持ち悪い。

竹村彰道(1952-)さんの現代数理統計学の本(旧版)が手元にあって,読みやすいかなとページをめくってみると,記述統計の復習から始まった。これなら大丈夫かと思いきや,いきなり,標本相関関数の大きさが -1から 1の範囲に限定されることは,コーシー=シュワルツの不等式を用いて容易に示すことができると説明無しにあった。

n次元ユークリッド空間のベクトルの内積の話だと思えばそのとおりなのだけれど,証明したことはなかったかも。Wikipediaでは数学的帰納法で証明していた。$A_k=(a_1,\ a_2,\ \cdots,\ a_k),\ B_k=(b_1,\ b_2,\ \cdots,\ b_k),\ $として,$\displaystyle S^{aa}_k=\sum_{i=1}^k a_i^2,\ S^{bb}_k=\sum_{i=1}^k b_i^2,\ S^{ab}_k=\sum_{i=1}^k a_i b_i, \quad R^{ab}_k=\frac{S^{ab}_k}{\sqrt{S^{aa}_k S^{bb}_k}} $
つまり,$ \bigl( S^{ab}_k \bigr)^2  \le S^{aa}_k S^{bb}_k$を証明すれば良い。

$k=1$の場合は,$ \bigl( S^{ab}_1 \bigr)^2 -  S^{aa}_1 S^{bb}_1 = (a_1 b_1)^2- (a_1^2)(b_1^2) = 0 $

$k=2$の場合は,$ \bigl( S^{ab}_2 \bigr)^2 -  S^{aa}_2 S^{bb}_2 = (a_1 b_1+a_2 b_2)^2- (a_1^2+a_2^2)(b_1^2+b_2^2) =  -(a_1 b_2- a_2 b_1)^2  < 0 $

$k \ge 2$に対して,$ \bigl( S^{ab}_k \bigr)^2  \le S^{aa}_k S^{bb}_k$ が成り立つと仮定して,$k+1$の場合を考える。与式は,$ \bigl( S^{ab}_k + a_{k+1}b_{k+1} \bigr)^2 - \bigl( S^{aa}_k + a_{k+1}^2 \bigr) \bigl(  S^{bb}_k + b_{k+1}^2 \bigr) $
$= \bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \Bigl( a_{k+1}^2 S^{bb}_k + b_{k+1}^2 S^{aa}_k -2 a_{k+1}b_{k+1} S^{ab}_k \Bigr)$
$= \bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \sum_{i=1}^k \Bigl( a_{k+1}^2 b_i^2 + b_{k+1}^2 a_i^2 -2 a_{k+1}b_{k+1} a_i b_i \Bigr)$
$=\bigl( S^{ab}_k  \bigr)^2 - S^{aa}_k S^{bb}_k - \sum_{i=1}^k \Bigl( a_{k+1} b_i - b_{k+1} a_i \Bigr)^2 < 0$

Wikipediaの証明などでは,$a_i, b_i >0$の場合だけに妥当するものが多いのでちょっと困る。
まあ,$\displaystyle f_k(x) = \sum_{i=1}^k (a_i x - b_i)^2$ の判別式$D \le 0$から証明するのが最も簡単なのだけど。


[1]賢者に学ぶ統計学の智(西内啓×竹村彰通,ダイヤモンド社)

2023年7月30日日曜日

最小二乗法(6)

最小二乗法(5)からの続き

実験データを$y = a x + b$にフィットする場合,最小二乗法で$(a,\  b)$とその平均二乗誤差$(\sigma_a^2,\ \sigma_b^2)$を求めてきた。これを,$y = f(x) = a x^2 + b x + c\ $に拡張して,自由度3が登場するかどうかを確認してみる。吉澤康和さんの「新しい誤差論」には結果だけ書いてある。

(1) a, b, c を決定する正規方程式とその解

$ \begin{pmatrix}\overline{x^4} & \overline{x^3} & \overline{x^2} \\ \overline{x^3} & \overline{x^2} & \overline{x^1} \\ \overline{x^2} & \overline{x} & 1 \\ \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ \end{pmatrix}= \begin{pmatrix}\overline{x^2\ y}\\ \overline{x\ y} \\ \overline{y} \\ \end{pmatrix}$ 

$ \begin{pmatrix} a \\ b \\ c \\ \end{pmatrix}= \dfrac{1}{\Delta_3} \begin{pmatrix}\overline{x^2\ y}(\overline{x^2}-\overline{x}^2)+\overline{x\ y}(\overline{x^2}\overline{x}-\overline{x^3})+\overline{y}(\overline{x^3}\overline{x}-\overline{x^2}^2)  \\ \overline{x^2\ y}(\overline{x^2}\overline{x}-\overline{x^3}) + \overline{x\ y}(\overline{x^4}-\overline{x^2}^2) + \overline{y}(\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) \\ \overline{x^2\ y}(\overline{x^3}\overline{x}-\overline{x^2}^2) + \overline{x\ y}(\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) +\overline{y}(\overline{x^4}\overline{x^2}-\overline{x^3}^2) \\ \end{pmatrix}$ 

ただし,$\Delta_3 = \overline{x^4}\overline{x^2}+2\overline{x^3}\overline{x^2}\overline{x}-\overline{x^2}^3-\overline{x^3}^2-\overline{x^4}\overline{x}^2$

$y_i$を共通の平均二乗誤差$\sigma^2_y$を持つ独立変数として,誤差伝播の法則より,

$\displaystyle \sigma_a^2= \sum_{i=1}^n \Bigl( \frac{\partial a}{\partial y_i}\Bigr) ^2 \sigma_y^2, \quad \sigma_b^2= \sum_{i=1}^n \Bigl( \frac{\partial b}{\partial y_i}\Bigr) ^2 \sigma_y^2 , \quad \sigma_c^2= \sum_{i=1}^n \Bigl( \frac{\partial c}{\partial y_i}\Bigr) ^2 \sigma_y^2 $ 

さらに,真の値$f_0(x_i)=a_0 x_i^2 + b_0 x_i + c_0$に対して,$\varepsilon_i = y_i -f(x_i)+ f(x_i) -f_0(x_i) =  \delta_i + f(x_i) -f_0(x_i) $ として,$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \varepsilon_i^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\sigma}^2_{f(x_i)} \Bigr\}$

ところで,$\displaystyle \tilde{\sigma}^2_{f(x_i)} = \sum_{j=1}^n \Bigl\{ \frac{\partial(a x_i^2 + b x_i + c)}{\partial y_j}\Bigr\}^2$ であり,この項を再度  $\sigma_y^2$ で表してもとの式に戻して計算すれば良い。

つまり,$\displaystyle \frac{\partial a}{\partial y_j}, \  \frac{\partial b}{\partial y_j},\  \frac{\partial c}{\partial y_j}$が計算できればよいことになる。
$\displaystyle \frac{\partial a}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^2}-\overline{x}^2)+ x_j(\overline{x^2}\overline{x}-\overline{x^3})+(\overline{x^3}\overline{x}-\overline{x^2}^2) \Bigr\}$
$\displaystyle \frac{\partial b}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^2}\overline{x}-\overline{x^3}) + x_j (\overline{x^4}-\overline{x^2}^2) + (\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) \Bigr\}$
$\displaystyle \frac{\partial c}{\partial y_j}=\frac{1}{n \Delta_3}\Bigl\{ x_j^2 (\overline{x^3}\overline{x}-\overline{x^2}^2) + x_j (\overline{x^3}\overline{x^2}-\overline{x^4}\overline{x}) +(\overline{x^4}\overline{x^2}-\overline{x^3}^2) \Bigr\}$

Mathematicaの力を借りると,計算結果が因数分解できて分子から$\Delta_3$が出る。
$\displaystyle \sigma_a^2 = \sum_{j=1}^n \Bigl( \frac{\partial a}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^2} -\overline{x}^2 \bigr) \sigma_y^2$
$\displaystyle \sigma_b^2 = \sum_{j=1}^n \Bigl( \frac{\partial b}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^4} - \overline{x^2}^2 \bigr) \sigma_y^2$
$\displaystyle \sigma_c^2 = \sum_{j=1}^n \Bigl( \frac{\partial c}{\partial y_j}\Bigr) ^2 = \frac{1}{n \Delta_3} \bigl( \overline{x^4} \overline{x^2}-\overline{x^3}^2  \bigr) \sigma_y^2$

$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial a}{\partial y_j}\frac{\partial b}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x}\overline{x^2} -\overline{x^3} \bigr) \sigma_y^2$
$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial b}{\partial y_j}\frac{\partial c}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x^2}\overline{x^3} - \overline{x}\overline{x^4} \bigr) \sigma_y^2$
$\displaystyle \sum_{j=1}^n \Bigl( \frac{\partial c}{\partial y_j}\frac{\partial a}{\partial y_j}\Bigr)  = \frac{1}{n \Delta_3} \bigl( \overline{x^4} \overline{x^2}-\overline{x^3}^2  \bigr) \sigma_y^2$

このとき
$\displaystyle \tilde{\sigma}^2_{f(x_i)}= \sum_{j=1}^n \Bigl\{ \frac{\partial a}{\partial y_i} x_i^2 + \frac{\partial b}{\partial y_j} x_i + \frac{\partial c}{\partial y_j} \Bigr\} ^2 = \frac{\sigma_y^2}{n \Delta_3} $
$\Bigl\{\bigl( \overline{x^2}-\overline{x}^2 \bigr) x_i^4 + 2 \bigl( \overline{x}\overline{x^3} -\overline{x^3} \bigr) x_i^3 + \bigl( \overline{x^4}-\overline{x^2}^2 + 2( \overline{x^3}\overline{x} - \overline{x^2}^2) \bigr) x_i^2 $
$+ 2\bigl( \overline{x^2}\overline{x^3} - \overline{x} \overline{x^4} \bigr) x_i + \bigl( \overline{x^2}\overline{x^4}-\overline{x^3}^2 \bigr)  \Bigr\}$

$x_i$について平均操作するとMathematicaを使い分子から$\Delta_3$が出ると。
$\displaystyle \frac{1}{n}\sum_{i=1}^n  \tilde{\sigma}^2_{f(x_i)} = \frac{\sigma_y^2}{n \Delta_3}$
$\Bigl\{\bigl( \overline{x^2}-\overline{x}^2 \bigr) \overline{x^4}+ 2 \bigl( \overline{x}\overline{x^3} -\overline{x^3} \bigr) \overline{x^3} + \bigl( \overline{x^4}-\overline{x^2}^2 + 2( \overline{x^3}\overline{x} - \overline{x^2}^2) \bigr) \overline{x^2} $
$\displaystyle + 2\bigl( \overline{x^2}\overline{x^3} - \overline{x} \overline{x^4} \bigr) \overline{x}+ \bigl( \overline{x^2}\overline{x^4}-\overline{x^3}^2 \bigr)  \Bigr\} = \frac{3}{n} \sigma_y^2$

したがって,自由度n-3の場合の式が得られた。
$\displaystyle \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n \Bigl\{ \delta_i^2 + \tilde{\sigma}^2_{f(x_i)} \Bigr\} =  \frac{1}{n} \sum_{i=1}^n  \delta_i^2 + \frac{3}{n} \sigma_y^2$
$\displaystyle \therefore \sigma_y^2 = \frac{1}{n-3} \sum_{i=1}^n \delta_i^2$