2024年1月19日金曜日

トリチウム(3)

トリチウム(2)からの続き

非常勤で担当している物理科学概説の授業も,後3回を残すばかりになった。最後の授業日の準備をしているが,テーマは原康夫さんの教科書である第5版 物理学基礎の第25章「原子核と素粒子」だ。

トリチウムのベータ崩壊で話を終らそうと思ったら,宇宙線と上層大気の衝突によって年間に生成されるトリチウム量のところでつまづいてしまった。茨城大学の鳥養さんの資料では,年間72 PBq/y(PBq=ベタベクレル=10^15ベクレル)生成されるとなっている。

そもそも,ベクレルは単位時間当たりの崩壊数なので時間の逆数になっている。これをさらに時間で割った量が生成量であるというのはどういうことかと,かつて理解していたところで再度引っかかってしまった。

70歳を過ぎるとこんなことが増えていくのだろう。一日中家の中で失せ物を探している時間がどんどん増加していくのと同様に,頭の中の失せ物を探す時間が増えていくのだ。こんなときに,生成AIが頼りになれば有難いのだけれど,これが現時点ではあまりあてにはならない。

さて,時間$\Delta t$の間に崩壊する原子核の数は,$\Delta N = \lambda N \Delta t$である。$\lambda = \frac{0.693}{T_{1/2}}$は崩壊定数であり,時間の逆数の次元を持っている。それは不安定な原子が崩壊する確率を表している。言い換えれば,放射性同位元素の物質量$N$に$\lambda$を掛けたものがその物質のベクレル数に等しいことから,放射性同位元素の物質量を,単位が異なるベクレル数で表現しても差し支えないだろうという考えだ。

あるいは,本質的に時間とともに変化する存在である放射性同位元素の量を表現するのに,時間的に不変な状態を想定しているモルやkgで表すのは適当ではなく,むしろその時点でのベクレル数で表わした上で,今後はこの割合で減少していくということに注意を喚起するという習慣があると善意に理解しよう。

まあ,トリチウムが放射平衡している場合は,時間とともに変化しないけれども,いつ何時,核施設の事故があるかもしれない。

さて,2000年のUNSCEARの資料[1] に,Table 4 Production rates and concentrations of cosmogenic radionuclides in the atmosphereという表がある。これによると,宇宙線によるトリチウムの単位面積,単位時間当たりの生成数は,$ 2500 /({\rm m^2 s}) $ であり,地球表面積,$ 5.1 \times 10^{14} {\rm m^2} $との積から,1秒間に,$\mu = 1.28 \times10^{18} $個/sのトリチウム原子が生成される。1年間($y =3.15 \times 10^{7} {\rm s} $)では $\mu y = 4.0 \times 10^{25}$個となる。一方,トリチウムの崩壊定数は,$\lambda = 0.693/ ( 12.3 × 3.15 × 10^7) /{\rm s} $ なので,$\mu y \lambda $によってベクレルに換算すれば,$72 \times 10^{15} {\rm Bq}$が得られる。

また,この自然の機構によって地球上に存在するトリチウムの総量$N(t)$は,次の微分方程式$\frac{dN(t)}{dt}=-\lambda N(t) + \mu $の平衡解 $N(\infty)$で与えられ,$N(\infty) = \frac{\mu}{\lambda} = 7.2 \times 10^{26}$個= $1.28 \times 10^{18}$Bqである。

これを使って,大気中の平均トリチウム濃度を計算してみる。資料[1]では対流圏の体積が,$3.62 \times 10^{18} {\rm m^3}$と与えられ,$0.35 {\rm Bq / m^3}$となる。ところが資料[1]では,$1.4 {\rm mBq / m^3}$となっていて,何だか250倍大きくなってしまうのだ。なんで?

あら,表にはfractional amount in atomosphereというのがあって,その係数が1/250=0.004になっていた。トリチウムはほとんどHTOの形態で存在しているので,ほとんどが雨水/海水に溶けてしまうということなのかもしれない。

図:トリチウムの概念図(東京電力から引用

[2]環境トリチウムについて(鳥養祐二)
[3]トリチウムの環境動態(百島則幸)
[4]大気中トリチウム濃度の変遷と化学形態別測定(宇田達彦・田中将裕)


0 件のコメント: