積分(3)からの続き
In=∫sinnx dx=(−cosx)sinn−1x−∫(−cosx)(n−1)sinn−2xcosx dx
=(−cosx)sinn−1x+(n−1)∫(1−sin2x)sinn−2x dx
=(−cosx)sinn−1x+(n−1)(In−2−In)
∴In=−1ncosxsinn−1x+n−1nIn−2(n≥2)
In=∫cosnx dx=(sinx)cosn−1x−∫(sinx)(n−1)cosn−2x(−sinx) dx
=(sinx)cosn−1x+(n−1)∫(1−cos2x)cosn−2x dx
=(sinx)cosn−1x+(n−1)(In−2−In)
∴In=1nsinxcosn−1x+n−1nIn−2(n≥2)
In=∫tannx dx=∫(1cos2x−1)tann−2x dx
=∫(tanx)′tann−2x dx−∫tann−2x dx
∴In=1n−1tann−1x−In−2(n≥2)
In=∫sinhnx dx=(coshx)sinhn−1x−∫(coshx)(n−1)sinhn−2xcoshx dx
=coshx sinhn−1x−(n−1)∫(1+sinh2x)sinhn−2x dx
=coshx sinhn−1x−(n−1)(In−2+In)
∴In=1ncoshx sinhn−1x−n−1nIn−2(n≥2)
In=∫coshnx dx=(sinhx)coshn−1x−∫(sinhx)(n−1)coshn−2xsinhx dx
=sinhxcoshn−1x−(n−1)∫(cosh2x−1)coshn−2x dx
=sinhxcoshn−1x+(n−1)(In−2−In)
∴In=1nsinhxcoshn−1x+n−1nIn−2(n≥2)
In=∫tanhnx dx=∫(1−1cosh2x)tanhn−2x dx
=−∫(tanhx)′tanhn−2x dx+∫tanhn−2x dx
∴In=−1n−1tanhn−1x+In−2(n≥2)
0 件のコメント:
コメントを投稿