現代物理学の導入部分で, 古典物理学(ニュートン力学+マクスウェル電磁気学)では原子の安定性が説明できないことがひとつの鍵になる。このためには,加速度運動する電子が電磁波を放出することを示す必要がある。ところが,加速荷電粒子からの電磁波の放出は,電磁気学で学ぶ最終コーナーであり,そこまで到達しない場合が多い。
お茶の水女子大学の理学部3年次編入試験では,この部分が次元解析で説明されていた。最初に,陽子($+e$)の周りを円運動している電子($-e$)の位置エネルギー$V(r)$を無限遠点を基準として求める。ただし,$r$は陽子から電子までの距離。クーロン定数は$k=\frac{1}{4\pi\varepsilon_0}$とするので,$V(r) = - k \frac{e^2}{r}$。
次に,この非相対論的な運動をしている電子(速度$\ v$,質量$\ m_e$)の全エネルギー$\ E\ $を求めると$\ E=\frac{1}{2}m v^2 - k \frac{e^2}{r}$。なお,円運動の向心力=クーロン力から,$m_e \frac{v^2}{r} = k \frac{e^2}{r^2}\ $を用いると,$E = -\frac{k}{2} \frac{e^2}{r}\ $であり,加速度は$\ a = \frac{v^2}{r} = \frac{k e^2}{m_e r^2}\ $。
加速度運動する電子から単位時間に放出される電磁波のエネルギー $S\ {\rm [kg \cdot m^2 \cdot s^{-3}]}$を,次元解析によって表わす。電子の加速度$\ a\ {\rm [m \cdot s^{-2}]}$,微細構造定数$\ \alpha\ $を使って$\ e^2\ k=\alpha \hbar c\ {\rm [kg \cdot m^3 \cdot s^{-2} ]}$ ,光速度$\ c\ {\rm [m \cdot s^{-1}]} \ $を用いると,$S \sim \alpha \hbar c \frac{a^2}{c^3}$ となる。以下では数係数を1とする。
円運動する電子が単位時間に失うエネルギーは,$-\frac{d E}{d t} = \frac{k e^2}{2} \frac{-\dot{r}}{r^2}= \frac{\alpha \hbar c}{2} \frac{-\dot{r}}{r^2}$。これが上記の$S$と等しいことから,$\frac{\alpha \hbar c}{2} \frac{-\dot{r}}{r^2} = \alpha \hbar c \frac{a^2}{c^3} $,つまり,$\dot{r} = - 2 r^2 \frac{a^2}{c^3}$
ここで,$\frac{a}{c} = \frac{\alpha \hbar c}{m_e c r^2}\ $なので,$r^2 \dot{r} = - 2 \bigl( \frac{\alpha \hbar c}{m_e c^2} \bigr)^2 c\ $
初期状態で半径$r_0$の原子が電磁波を放出して半径0になるまでの時間を$\tau$とすると,
$\int_{r_0}^0 r^2 dr = \int_0^\tau - 2 \bigl( \frac{\alpha \hbar c}{m_e c^2} \bigr)^2 c\ dt\ $から,
$-\frac{r_0^3}{3} = - 2 \bigl( \frac{\alpha \hbar c}{m_e c^2} \bigr)^2 c \tau $
$\therefore \tau = \frac{r_0^3}{6 c} \bigl( \frac{m_e c^2}{\alpha \hbar c} \bigr)^2 $
$r_0=10^{-10} {\rm [m]}$,$\alpha = \frac{1}{137}$,$ \hbar c = 197 \times 10^{-15}{\rm [MeV \cdot m]}$,$m_e c^2 = 0.5 {\rm [MeV]}$,$c=3 \times 10^8 {\rm [m \cdot s^{-1}]}$ を代入すると,$\tau = 6.7 \times 10^{-11} {\rm [s]}$となる。
0 件のコメント:
コメントを投稿