平均自由行程を考えるために色々試行錯誤していたら,立体角の計算が必要になった。球の外側にある点から球を見込む立体角である。図のように,半径$a$の球の中心${\rm Q}$から,$\overline{\rm PQ}=\ell (>a)$の距離に点${\rm P}$をとる。
${\rm P}$から球を見込んだ時の球との接円が$x-y$平面にできるとする。接円と$y$軸の交点を${\rm A, B}$とすると,$\overline{\rm PA} = \overline{\rm PB} = \sqrt{\ell^2-a^2}$となる。
立体角$\Omega$は次の積分で与えられる。$\Omega = \int_0^{2\pi} \int_{\pi/2}^{\pi/2+\alpha} \sin\theta d\theta d\phi = 2\pi [-\cos \theta]_{\pi/2}^{\pi/2 + \alpha} = 2\pi \sin \alpha$ 。ただし,$ \alpha = \angle {\rm QPA}$であり,$\sin \alpha = \frac{a}{\ell}$。
図:球を見込む立体角
0 件のコメント:
コメントを投稿