2019年11月22日金曜日

パラメータ励振(2)

ブランコのパラメータ励振単振子モデルをMathematicaで解いてみる。
$\epsilon = a / \ell_0$は,重心の上下振幅$a$ともとの振り子の長さ$\ell_0$の比であり,$\omega_0= \sqrt{g/\ell_0}$は重心が動かない場合の振り子の固有角振動数だ。
\begin{equation*}
\ddot{\phi} + \epsilon \sin \omega t \ \dot{\phi}  + \omega_0^2 (1+\epsilon \cos\omega t) \phi = 0
\end{equation*}
重心の上下振動の振動数を振り子の振動数の2倍にしたときに励振が起こる。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
e = 0.05; w0 = 3; w = 2 w0;
sol = NDSolve[{x''[t] + 2 e w Sin[w t] x'[t] 
    + w0^2 (1 + e Cos[w t]) x[t] == 0,
    x[0] == 0.1, x'[0] == 0}, x, {t, 0, 30}];
f[t_] := x[t] /. sol[[1]]
Plot[f[t], {t, 0, 20}]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

図 パラメータ励振の数値計算例

0 件のコメント: