abc予想(3)からの続き
abc予想が正しければ,ただちにフェルマーの定理が簡単に証明されるとのことだが,事情は若干ややこしい。正確には,abc予想の(2)の表現において$\varepsilon = 1 $として,このときに,$K(\varepsilon)=1$が満たされればという条件がついてくる。ウェブ上ではこれを強いabc予想と書いているものもあるが,その表現がよいのかどうかはあまりはっきりしない。
(強いabc予想?) $c < K(\varepsilon=1) {\rm rad}(abc)^{1+(\varepsilon=1)} = 1 \cdot {\rm rad}(abc)^2 $
これからフェルマーの定理を導くのは次のようになる。
自然数$a,\ b,\ c\ $が互いに素であり,自然数$n > 6\ $に対して,$a^n,\ b^n,\ c^n\ $が abcトリプレットをなすとする。すなわち,$a^n + b^n = c^n\ $であって,$a^n < b^n$かつ$a^n,\ b^n\ $は互いに素。このとき,$c^n < {\rm rad}(a^n b^n c^n)^2 = {\rm rad}(a b c)^2 < (a b c)^2 < c^6\ $が成り立つ。
つまり,$n \ge 6\ $に対して,$a^n + b^n = c^n\ $は偽であることから,フェルマーの定理が $n \ge 6\ $に対して成り立つ。$n= 3, 4, 5\ $については別途成り立つことを示す必要があるが,これらはすでに証明されている。
これを少し詳しく見た様子は,黒川信重・小山信也による「ABC予想入門」に記述されている。