SIDRモデル(1)からの続き
牧野さんの例では,感染期間/免疫消失期間が1/100 と小さくなる場合が示されていた。そこで,これに対応するケースの計算をしてみた。
R = 5; \[Gamma] = 13; \[Beta] = R/\[Gamma]; \[Alpha] = 130*10;基本再生産数と免疫消失期間を前回のそれぞれ2.5倍,10倍にしている。
sol = NDSolve[{
x'[t] == \[Beta] x[t] (1 - x[t] - y[t] - z[t]) - x[t]/\[Gamma],
y'[t] == 0.9987*x[t]/\[Gamma] - y[t]/\[Alpha],
z'[t] == 0.0013*x[t]/\[Gamma],
x[0] == 0.01, y[0] == 0, z[0] == 0}, {x, y, z}, {t, 0, 3000}];
fx[t_] := x[t] /. sol[[1, 1]]
fy[t_] := y[t] /. sol[[1, 2]]
fz[t_] := z[t] /. sol[[1, 3]]
Plot[fx[t], {t, 0, 3000}, PlotRange -> {0, 0.5}]
Plot[fz[t], {t, 0, 3000}, PlotRange -> {0, 0.01}]
この結果,定常状態における全人口に対する感染者割合は0.77%,一日当たり死亡数は,97人/日となる。年間死亡数は3.5万人なので,季節性インフルエンザの3.5倍程度に収まることになる。
図1:SIDRモデルにおける感染者割合の推移
図2:SIDRモデルにおける累計死亡数の推移
(注)西浦さんの公式だと,$\frac{1-1/R}{1+\alpha / \gamma}\cdot \frac{n}{\gamma} =100$人/日となるので,上記の結果とよく対応している。
0 件のコメント:
コメントを投稿