2024年10月11日金曜日

ザップ・エナジー

核融合スタートアップからの続き

10月7日の日経朝刊1面の片隅に「みずほFGが核融合発電米新興に出資」というタイトルの記事があった。2017年にシアトルで創業したザップ・エナジーという会社だ。ワシントン大学とローレンス・リバモア研究所からのスピンアウトであり,マイクロソフトなど合計62億ドルを集めているので,資金調達額では世界トップ10に入る(みずほは数億円程度か)。

核融合スタートアップでトカマクやレーザー以外だと,FRC(Field Reversed Configuration)が目についていたけれども,ザップ・エナジーは,Sheared Flow Stabilized Z-Pinch を用いるものだ。Zピンチは,「プラズマを流れる電流が周囲に磁場を形成して自己収縮して自発的に高温高密度状態を作り出す物理現象だ(Wikipediaから引用)。」サンディア国立研究所のZマシンはこの原理を使っているけれど,ザップ・エナジーのマシンコンセプトはより簡素だ。聞いたことがなかったのでPerplexityに尋ねてみた。
Q(koshix):
ZAP Energy が実現を目指している核融合システムの原理とその特徴や他の方式との違いなどを技術的な詳細に渡って日本語で解説してください。

A(Perplexity Pro):
ZAP Energyが開発している核融合システムは、「せん断流安定化(SFS)Zピンチ」と呼ばれる独自の方式を採用しており、以下のような特徴と技術的詳細を持っています。

基本原理
ZAP Energyのシステムは「Zピンチ」と呼ばれる方式を基礎としています。この方法では、プラズマに大電流を流すことで自己生成される磁場を利用してプラズマを圧縮し、核融合反応に必要な高温高密度状態を作り出します。

主な特徴
1.コンパクト設計
ZAP Energyの核融合炉は非常にコンパクトで、「ガレージに置ける」ほどの小ささを実現しています。商用規模の反応炉と溶融金属ジャケットの直径はわずか10フィートほどです。
2.シンプルな構造
超伝導磁石や高出力レーザーを必要としないため、他の核融合方式と比べて構造がシンプルです。
3.低コスト
構造のシンプル化により、開発・運用コストの低減が期待されています。
4.スケーラビリティ
小型でモジュラーな設計により、需要に応じて複数の反応炉を配置することが可能です。

技術的詳細
1.せん断流安定化(SFS)
従来のZピンチ方式では、プラズマの不安定性が大きな課題でした。ZAP Energyは「せん断流安定化」という技術を用いてこの問題を解決しています。
2.電流とプラズマの関係
Zピンチに使用される電流が大きいほど、プラズマはより高温高密度になります。ZAP Energyは、より大電流に到達することを目指しています。
3.FuZE-Q実験装置
現在、ZAP Energyは「FuZE-Q」と呼ばれる次世代プラットフォームを運用しています。この装置は約650kAで臨界条件(Q=1)に達する見込みです。
4.反応プロセス
プラズマ内の重水素と三重水素同位体が融合すると、中性子と熱が放出されます。このエネルギーは反応室を囲む溶融金属に吸収され、その後電力生成に利用されます。
5.パルス運転
ZAP Energyのシステムは、内燃機関のシリンダーのように繰り返し発火する方式を採用しています。

他の方式との違い
1.磁場閉じ込め方式との違い
トカマクなどの磁場閉じ込め方式が大型の超伝導磁石を必要とするのに対し、ZAP Energyのシステムはプラズマ自体が生成する磁場を利用します。
2.慣性閉じ込め方式との違い
レーザー核融合などの慣性閉じ込め方式が高出力レーザーを必要とするのに対し、ZAP Energyのシステムはそれらを必要としません。
3.サイズと複雑さ
他の方式が大規模で複雑な装置を必要とするのに対し、ZAP Energyのシステムは比較的小型でシンプルです。

ZAP Energyの核融合システムは、その独自の技術によってコンパクトで低コストな核融合炉の実現を目指しており、将来的には持続可能なエネルギー源として期待されています。



図:ザップ・エナジーの核融合炉のイメージ(日本経済新聞社から引用)

0 件のコメント: