2022年9月21日水曜日

半経験的質量公式

原子核の液滴模型にもとづくベーテ・ヴァイツゼッカーの半経験的質量公式は,原子核の結合エネルギーを質量数Aと陽子数Zの関数として与えるものだ(後期の授業開始が迫っており,準備に追われてこんなものまで引っ張り出すことに…)。

質量公式といえば,森田先生の友達だった早稲田大学の山田勝美先生を思い出す。いろいろお世話になったことも。ベータ崩壊の大局的理論から,精密な質量公式の導出へとつながる研究に進み,日本の原子核理論分野ではユニークな位置にいたような気がする。

ベーテ・ヴァイツゼッカ—の質量公式からペアリング項を除いた束縛エネルギーの表式は次のようになる。
$ B(A,Z) = a_\mathrm{V} \cdot A - a_\mathrm{O} \cdot A^{2/3} - a_\mathrm{C} \cdot  \frac{Z^2}{A^{1/3}} - a_\mathrm{S} \cdot \frac{(N - Z)^2}{A} $
順に,体積項,表面項,クーロン項,対称項となっている。

教科書にあるような,一核子当たりの束縛エネルギー$B(A)/A$のグラフを書くためには,陽子数と質量数の関係$Z(A)$が必要である。これは,$\frac{d}{dZ}B(A,Z)=0$を与える$Z^*(A)$として求まり,
$Z^*(A)=\dfrac{A}{2+ a_\mathrm{C}/(2 a_\mathrm{S}) A^{2/3}}$となる。

ここで,$a_\mathrm{V}=15.8,\ a_\mathrm{O}=17.8,\ a_\mathrm{C}=0.70, \ a_\mathrm{S}=23.3$ という経験値(単位はいずれも MeV)を代入すると,

b[a_, z_] := 
 15.6 a - 17.2 a^(2/3) - 0.70 z^2/a^(1/3) - 23.3 (a - 2 z)^2/a
sol1 = NSolve[D[b[a, z], z] == 0, z];
z[a_] := z /. sol1[[1]]
e[a_] := b[a, z[a]]/a
v[a_] := 15.6
o[a_] := v[a] - 17.2 a^(-1/3)
c[a_] := o[a] - 0.70 z[a]^2/a^(4/3)
s[a_] := c[a] - 23.3 (1 - 2 z[a]/a)^2
Plot[{v[a], o[a], c[a], s[a]}, {a, 1, 216}, PlotRange -> {0, 20}]
sol2 = NSolve[D[e[a], a] == 0, a]
z[a] /. sol2[[2]]

{{a -> 4.66671*10^7}, {a -> 61.2878}}
27.4402

この近似式では,A=61,Z=27 が核子当たり結合エネルギー最大の核種となる。実際は鉄Fe(A=56, Z=26)なので少しズレている。

当初は,自分でグラフを書くには,$A=2Z + k Z^2$という近似が簡単かなと考えていた。鉛Pb(A=208, 82)を代入すれば,$1/k=153$から$Z(A)=-153+\sqrt{153^2+153 A}$ となる。概ねよい近似ではあるが,それほどメリットはなかった。


図:ベーテ・ヴァイツゼッカ—質量公式による核子当たり結合エネルギー
(上から,体積項,−表面項,−クーロン項,−対称項)

0 件のコメント: