ラベル 物理 の投稿を表示しています。 すべての投稿を表示
ラベル 物理 の投稿を表示しています。 すべての投稿を表示

2024年12月3日火曜日

物理AI基盤モデル

AI Feynman(4)からの続き

世の中のあらゆる“未知の物理現象”を予測できるAI」というおどろおどろしいタイトルの記事がITメディアに掲載されていた。えええっ,これはなんだ。

ということで,原論文「A Phenomenological AI Foundation Model for Physical Signals」を読んでみた・・・というか,NotebookLMに読ませてみた(^_^;;;)。いろいろ質問したところ,こんなことかなというのがわかってきた。と思ったけど,読解力が不足していた。これは,生成AIに頼りすぎて読み解く力が衰えてきたためだ。知能のフレイル現象

Q(koshix):
論文の内容を以下のようにまとめましたが,不正確な部分を修正してください。

「ある特定の物理現象の解析にAIを用いることはよく行われている。今年のノーベル化学賞のタンパク質構造予測もその一例だろう。太陽系外惑星の探索に深層学習を利用する場合のように,大量のデータから特徴をつかみ出すことができる。あるいは大量のデータの中に潜む法則性=方程式を導くこと,さらには方程式を経由せずにデータから直接別のデータを予測することなどなどがある。

今回の論文では,複数の物理現象にまたがって,背景となる物理法則を与えずに,AIによって新しい予測を可能にするというものだ。その結果,単独の現象だけでAI予測をする場合よりも精度が上がる場合があるというのだ。たぶん,複数の減少をまたぐことで,物理法則による制限がインプリシットに含まれているのではないかと思われる。

5.1億個のデータを分析しているというが,何種類の実験を対象にしているのかが必ずしもはっきりしなかった。論文で例示されていたのは,減衰調和振動子でカオス的な振舞いをするもの,電流エネルギーの熱エネルギーへの転化やその逆過程,都市や国レベルの電力消費や気象データなど,複数種類のセンサーの測定値の時系列の関係を表現するものだ。

測定値の時系列データは適当な時間幅に区切られて数値化し,それらの生成順序を含めたデータにすることで,大規模言語モデルのトークンのように扱うことができる。とNotebookLMは説明してくれた。なるほどもっともらしい話だ。あとは通常のLLMの手法が使えるということか。」

A(NotebookLM):
ご指摘いただいた論文内容のまとめについて、ソースに基づいて修正点を以下に示します。

(1)物理法則を用いないAI予測:論文で提案されているAIモデルは、複数の物理現象にまたがるというよりも、物理法則に関する事前知識や帰納的バイアスを導入せずに、様々な物理現象を扱うことができる点が新しいです。このモデルは、単一の現象に特化したAI予測よりも精度が向上する場合があることが示されています。これは、多様な物理データで学習することで、物理法則による制約が暗黙的にモデルに組み込まれているためと考えられます。

(2)データ分析の対象:論文では、5.1億個のデータを用いてAIモデルを学習させています。このデータは、41種類の公開データセットから収集されており、河川流量、太陽光発電量、降水量、太陽活動など、様々な現象、物理量、センサーが含まれています。論文では、減衰調和振動子、熱電変換、都市や国レベルの電力消費、気象データなどを例として挙げて、モデルの性能を検証しています。

(3)時系列データの扱い:論文では、測定値の時系列データを一定の時間幅で区切り、数値化し、生成順序を含めたデータとして扱っています。これは、大規模言語モデルのトークンと同様に扱うことができるとのことですが、この記述はソースには見当たりません。NotebookLMの説明とのことですが、ソースの情報からは、このモデルが通常のLLMの手法と全く同じであるとは断言できません。

(4)モデルの構造:論文で提案されているモデルは、センサーデータを入力として、それを時系列の1次元パッチに分割し、Transformerベースのエンコーダネットワークを用いて共通の埋め込み空間に射影します。このエンコーダは、多様なセンサーデータで学習することで、特定のセンサーの種類に依存しない、様々な物理現象の根底にある時間的パターンを効果的に学習します。その結果得られるコンパクトな表現は、現象論的デコーダと組み合わせて、軌跡予測や再構成などのタスクに使用されます。

重要なポイント
・論文では、物理法則を明示的に与えることなく、多様な物理データから学習することで、様々な物理現象を予測できるAIモデルを提案しています。
・モデルは、ゼロショット学習が可能であり、学習データに含まれていない現象に対しても予測を行うことができます。
・論文では、このモデルが、大規模言語モデルと類似した能力を持っている可能性を示唆しています。
ご指摘いただいた内容とソースを比較検討することで、論文への理解が深まることを期待します。



図:物理AI基盤モデルの概念(A Phenomenological AI Foundation Model for Physical Signals から引用)

[3]AI for Science とデータ駆動科学(五十嵐康彦・竹中光・永田賢二・岡田真人)
[4]人工知能の弱点を補う物理学(高安秀樹)
[5]物理法則を組み込んだ深層学習(雪島正敏・清水浩之)

2024年11月24日日曜日

朝永振一郎

科学者の墓からの続き

朝永振一郎の墓の話から繋がって,昔の週刊朝日がやってきた。1965年の10月21日に朝永振一郎(1906-1979)が「繰り込み理論の発明による量子電磁力学の発展への寄与」でノーベル物理学賞を取ったという連絡があった。「中間子理論の提唱」による湯川秀樹のノーベル物理学賞に次いで日本人で二番目である。

当時,小学校6年生だった自分は,朝日新聞と北國新聞の大きな見出しを見て,「量子電磁力学なにそれ,そんなもんきいたこともないわ」と思った。科学の児童書を沢山読んでいて何でも知っていると勘違いした小学生は,自分が何も知らないことが〈山〉のように控えていることに気づかなかったのである。まあ,60年後の今でもほとんどそのままなんだけどね。

週刊朝日では,「『ノーベル賞』の素顔」というタイトルの6pの記事が,6pのグラビア写真と共に掲載されている。門下生の伊藤大介の戦後すぐの話に「まるで人間の生活できるところじゃなかったが,研究ができる喜びは大きかった。私はこんな研究室に,馬場一雄さん(現奈良女子大教授)と一緒に寝泊まりしていたが,朝永先生も一緒に泊まり配給の酒を三人でチビチビ飲んだこともあった」とある。

森田研の先輩の久米健次さんが奈良女子大学の馬場一雄先生の研究室に助手として就職したのは,1976年ごろだったろうか。研究室にくるたびに馬場先生の話題が出ていたような。



写真:1965年11月5日号の週刊朝日の表紙を引用

2024年11月9日土曜日

シンバル

NHKの探検ファクトリーはとても興味深い番組だ。バラエティー生活小百科の後番組で,定時の土曜日お昼時だけでなく再放送でもよくみかける。今日は大阪市平野区のシンバル工場だった。

小出製作所は,金属のヘラ絞り加工を専業とする10人ほどの小企業だが,従業員からの提案で,20年ほど前からシンバルの製造を行っている(シンバル部門は社長を含めて4名だけ)。日本でただ一つのシンバル製造メーカーで,小出シンバルのブランドで有名なのだった。

番組では,製造工程をていねいに紹介していた。気になったのは,同じ直径のシンバルでは,重いほうが音が高いというところだ。弦の固有振動の場合は,振動数は張力を線密度で割ったものの平方根に比例する。つまり重い弦の方が振動数は低くなるわけだ。円盤の振動では,そうなっていない。これは重いシンバルのほうが,その曲げ剛性が大きくなるからのようだ。たぶん。



写真:小出のクラシックシンバル(Amazonストアから引用,10万5千円)

2024年11月8日金曜日

火星19

弾道ミサイルの軌道(5)からの続き

ロイターが伝えた朝鮮中央通信のニュースによれば,10月31日に発射したのは大陸間弾道ミサイル「火星19」だとのこと。ICBMの最終完結形態で世界最強のミサイルをうたっている。知らんけど。飛行距離は1001.2km,飛行時間は5156秒,最高高度は7687.5km だ。

無意味なアラートを出すよりも,こういった基本的な情報がほしいところだ。しかし,防衛省が韓国軍や米軍からこれらの情報を入手してもことさらにマスコミに流す必要はないと考えているのだろう。日本政府にしてみれば,アラートを出すだけで危機意識の醸成という目的は達成される。

2年前の「火星17」については,同じロフテッド軌道で,飛行距離 999.2 km ,飛行時間 4135 秒,最高高度 6040.9 km だった。これに比べると,今回は飛行時間が1000秒伸びて,最高高度も1600kmほど高くなっている。

そこで,忘れかけていたMathematicaのコードを引っ張り出して再計算してみた。目の子でパラメータサーチをした。単純なモデルなので,そんなにピッタリ再現できるわけではないが,ほぼほぼ雰囲気は得られる。飛行時間を5156秒=86分あたりに固定すると,最高高度は170kmほど高くなって7850km(+2.1%)になってしまう。最高高度を7600km台にするためには,飛行時間を2分ほど減らして84分にする(-2.3%)必要がある。燃焼時加速度a,燃焼時間τ,燃料重量比pなどを変えても,飛行時間で制約がかかる範囲では,飛行高度を再現するには至らなかった。

これらのパラメタのままで,投射角度だけを45度にすれば(飛行時間Tは,地表に到達する点で調整する),大円到達距離は16500kmを越えてくる。

g = 0.0098; R = 6350; τ = 90.8; p = 0.75; a = 0.045; s = 86.7 Degree; T = 5160;
g = 0.0098; R = 6350; τ = 90.8; p = 0.75; a = 0.045; s = 45 Degree; T = 7050; 
(* g=0.0098; R=6350; τ=90.4; p=0.75; a=0.045;s=86.7Degree;T=5160-120; *)
(* g=0.0098; R=6350; τ=90.4; p=0.75; a=0.045;s=45 Degree;T=6850; *)

fr[t_, τ_] := a*Sin[s]*HeavisideTheta[τ - t]
ft[t_, τ_] := a*Cos[s]*r[t]*HeavisideTheta[τ - t]
fm[t_, τ_] := -p/(τ - p*t)*HeavisideTheta[τ - t]
sol = NDSolve[{r''[t] == -fm[t, τ]*r'[t] + h[t]^2/r[t]^3 - g R^2/r[t]^2 + fr[t, τ], 
r[0] == R, r'[0] == 0,  h'[t] == -fm[t, τ]*h[t] + ft[t, τ], h[0] == 0}, {r,  h}, {t, 0, T}]
f[t_] := r[t] /. sol[[1, 1]]
d[t_] := h[t] /. sol[[1, 2]]
Plot[{6350, f[t]}, {t, 0, T}]
Plot[{f[t + 1] - f[t], d[t]*R/f[t]^2, d[t]/f[t]}, {t, 0, T}, 
 PlotRange -> {-8, 8}]

{f[T/2] - 6350, tyx[T], v[T]/0.340}
→ {7851.42, {5160, -46.3658, 1007.58}, 24.5585}
g0 = ParametricPlot[{NIntegrate[R d[t]/f[t]^2 , {t, 0, tt}], f[tt] - R}, {tt, 0, T}]
→ {8231.43, {7050, 121.626, 16657.9}, 25.6423}
g9 = ParametricPlot[{NIntegrate[R d[t]/f[t]^2 , {t, 0, tt}], f[tt] - R}, {tt, 0, T}]



図:北朝鮮のミサイルの軌道(ロイター記事から引用)

2024年10月9日水曜日

ニューラルネットワーク

今年のノーベル物理学賞は,今日のAIブームの基盤となる人工ニューラルネットワークの基礎理論に与えられた。中継を見ていると,最初に委員長からスウェーデン語と英語の両方で発表があって,簡単な業績紹介。その後,ヒントン(バックプロパゲーション!)とのライブでのやりとりや質疑応答などがあった。

ホップフィールドは物理学者だし,ホップフィールドネットワークはイジングモデルとも関係づけられているので,物理らしい。一方,ヒントンは心理学者として出発したコンピュータ科学者なので,これは物理か?というところだ。今のところ物理屋さんたちもほとんど両手で賛成しているようだ。情報が宇宙や物性や素粒子と並ぶ物理学の一分野であるという共通認識が確立する第一歩ということか。

Q(koshix):
ホップフィールドネットワークとボルツマンマシンについて,ニューラルネットワーク全体の中でそれぞれがどのように位置づけられて,その後の発展にどういう影響を与えたかを,なるべく分かりやすく具体的に説明してください

A(Perplexity Pro):
ホップフィールドネットワークとボルツマンマシンは、ニューラルネットワークの発展において重要な役割を果たした2つのモデルです。それぞれの位置づけと影響について説明します。

ホップフィールドネットワーク
ホップフィールドネットワークは、1982年にジョン・ホップフィールド(1933-)によって提案された再帰型ニューラルネットワークの一種です。
特徴と位置づけ
・単一層のニューロンで構成され、各ニューロンが他のすべてのニューロンと双方向に結合しています。
・連想記憶として機能し、不完全または雑音のある入力からパターンを復元できます。
・エネルギー関数の最小化によってパターンを想起します。

影響と発展
1.記憶容量の向上:研究者たちは、ホップフィールドネットワークの記憶容量を向上させる方法を探求しました。例えば、ニューロン間の複雑な接続を導入することで、従来のモデルの2倍以上の記憶容量を実現しました。
2.最適化問題への応用:ホップフィールドネットワークは、組み合わせ最適化問題の解決にも応用されました。
3.深層学習への影響:現代の言語モデル(ChatGPTなど)の基盤となるTransformerネットワークは、ホップフィールドネットワークと類似した構造を持っています。
4.脳機能のモデル化:記憶や認知プロセスの研究に応用され、神経科学の発展に寄与しました。

ボルツマンマシン
ボルツマンマシンは、1985年にジェフリー・ヒントン(1947-)らによって提案された確率的ニューラルネットワークモデルです。

特徴と位置づけ
・対称的に結合されたニューロン様ユニットで構成され、確率的に on/off を決定します。
・二値データセットから興味深い特徴を発見する能力を持ちます。
・学習アルゴリズムは単純ですが、多層構造では非常に遅くなる傾向があります。

影響と発展
1.制限ボルツマンマシン (RBM):ボルツマンマシンを簡略化した RBM は、深層信念ネットワーク (DBN) の基本構成要素となりました。
2.深層学習の前駆:RBM は、深層ニューラルネットワークの事前学習に使用され、深層学習ブームの先駆けとなりました。
3.生成モデルへの貢献:ボルツマンマシンの考え方は、変分オートエンコーダ (VAE) や生成敵対的ネットワーク (GAN) などの現代の生成モデルの発展に影響を与えました。
4.確率的モデリング:機械学習における確率的アプローチの重要性を示し、後の研究に影響を与えました。
5.教師あり学習への応用:教師あり RBM は、分類タスクのための興味深い分布設定を提供しました。

これらのモデルは、ニューラルネットワークの理論的基礎を築き、現代の深層学習技術の発展に大きく貢献しました。ホップフィールドネットワークは主に連想記憶と最適化問題に、ボルツマンマシンは特徴学習と生成モデリングに影響を与え、両者ともに現代のAI技術の礎となっています。



図:これがAIの持つニューラルネットのイメージなのか(DALL-E3より)

[1]Hopfield Network(Scholarpedia)
[2]Boltzmann Machine (Scholarpedia)

2024年9月24日火曜日

知性の物理学

茂木健一郎のPIVOTチャンネルが,「生成AIを丸裸にする知性の物理学」というタイトルで,ハーバード大学脳科学センターで知性の物理学プログラムを主催している田中秀宣さんを招いて対談をしていた。とても刺激的で良かったのだけれど,今一つ具体性にかけて空振りが続く試合だった。そういえば,東大理学部物理にも統計力学の樺島祥介さんが主催する「知の物理学研究センター」というのがあったね。
Q(koshix):
知性の物理学 Physics of Intelligence について教えてください。
専門用語を避けずに説明して見てください。多角的な視点はOKです。

A(Gemini 1.5 PRO)
知性の物理学:専門用語を交えた多角的な解説
「知性の物理学」とは、従来、哲学や心理学の領域であった「知性」を、物理学の厳密な枠組みで理解しようとする学際的な研究分野です。近年、人工知能の発展や脳科学の進歩を背景に、急速に注目を集めています。

1.知性の物理学の目的
知性の本質の解明:知性を、単なる情報処理ではなく、物理的な現象として捉え、その本質を明らかにすることを目指します。
人工知能の限界と可能性:人工知能のさらなる発展のために、人間の知性の仕組みを解明し、それを模倣する技術開発を目指します。
脳科学との連携:脳イメージング技術などの進歩を活かし、脳内の情報処理メカニズムと知性の関係を解明します。

2.知性の物理学における主要なアプローチ
神経回路網の物理モデル:脳の神経回路網を、物理学のモデルを用いて記述し、学習や記憶といった高次脳機能をシミュレーションします。
情報熱力学:情報処理とエネルギー消費の関係を、熱力学の法則に基づいて考察し、知性の効率的な実現を目指します。
量子脳理論:量子力学的な現象が、意識や創造性といった高次の認知機能に関わっている可能性を探求します。

3.知性の物理学が扱う概念
複雑系:脳は、多数の要素が複雑に相互作用する複雑系であり、そのダイナミクスを理解することは大きな課題です。
エマージェント現象:個々の要素の性質だけでは説明できない、全体として現れる新たな性質を指します。知性は、脳の複雑系からエマージェントに現れる現象と考えられます。
計算論的神経科学:脳の情報処理を、計算論的な視点から解析し、神経回路網の機能をモデル化します。

4.知性の物理学が抱える課題
意識の問題:意識の起源や本質は、哲学、神経科学、物理学など、様々な分野で議論されている難問です。
測定の問題:脳の活動を直接観測することは困難であり、間接的な方法を用いる必要があります。
モデルの複雑性:脳の機能を完全に再現できるようなモデルを構築することは、非常に困難です。

5.知性の物理学の将来展望
汎用人工知能の実現:人間の知能に匹敵する、あるいはそれを超える人工知能の開発が期待されます。
脳疾患の治療:脳のメカニズムの解明は、アルツハイマー病や統合失調症などの脳疾患の治療法開発につながる可能性があります。
人間理解の深化:知性の物理学は、人間がどのように思考し、学習し、創造性を発揮するのかをより深く理解するための新たな視点を提供します。

6.より専門的な用語
相転移:物質の状態が、ある特定の条件下で急激に変化する現象。脳の学習過程における相転移が注目されています。
自由エネルギー原理:脳が、外界の情報と内部モデルとの間の不一致を最小化するように機能するという仮説。
結合係数:神経回路網において、ニューロン間の接続の強さを表すパラメータ。学習によって変化します。

知性の物理学は、物理学、脳科学、コンピュータサイエンスなど、多岐にわたる分野の研究者が集結し、共同で研究を進めている最先端の学問分野です。
この分野の研究は、人間の知性の謎を解き明かすだけでなく、人類の未来を大きく変える可能性を秘めています。 

図:知性の物理学のイメージ(Imagen3に拒否られ,DALL-E3に描かせたもの)


結局なんだかよくわからないのであった。神経網が生成する人間の知性と,ニューラルネットが生成するAIを同じ土俵の上に上げて,後者は単に設計された機械(もしくはソフトウェア)ではなくて,物理的な現象としての創発過程として理解しようという話だ。というのも,生成AIがこのようにうまく機能している状態がそもそもよく理解できていないからである。とにかく計算リソースをつぎこんで適当にダイヤルを回しているうちに動いてしまったようなこと。

その上で,これを知性の物理学というからには,知性とは何かを定量的に捉えて,測定可能な量を用いて定義する必要があるのだけれども,そのあたりは十分説明されていない。すなわち何らかの主導原理的なストーリーがなくて,あるいは鍵となる仮説や実験事実の背景がないままに,妖しいキーワードとしての,脳科学,量子脳理論,複雑系が多用されるのはちょっとかんべんしてほしいかなあ。

あと,ハーバードやMITが西海岸と違って,より理学部的にアプローチしているという話はわからなくもなかったが,医学・生理学とのつながりを重視する方向に傾きすぎているのではないかという気もした。いや,もちろんそちら側に正解があるのかもしれないけれど,どうなのだろうか。



2024年5月19日日曜日

電子イオンコライダー

放射光施設からの続き

5月15日のニュースで,日本が,米国の次期原子核大型実験計画であるEIC(Electron Ion Collider)に参画すると発表されていた。ブルックヘブン国立研究所の全周3.8km,100GeV/nucleonの重イオンコライダー(RHIC)を改造するもので,2026年に建設開始2032年運転開始予定だ。2600億円〜4300億円の建設費のうち,測定装置の一部をつくるようだ。

電子イオンコライダーは,重心系のエネルギーで20〜141GeVの電子と原子核の衝突型加速器である。電子,陽子,重陽子,ヘリウム3は80%の偏極が可能だ。加速できるイオンは陽子からウラニウムまで。

物理としては,ハドロンのクォークグルーオン構造を明らかにするというものだ。核子の質量やスピンが何に由来するか,クォークグルーオンパートン分布関数を精密に決めるなど。日本側の推進機関は,山形大や理研で,神戸大,日大,KEKが協力機関となる。

核子のスピン構造といえば若松さんが40年前から取り組んでいた。一般受けするトピックにはやや遠いような気もするが,アメリカから強く要求されたので,予算がつくということなのかな。


図:EICの概念図(BNLのEICサイトから引用)

ChatGPT-4oはわかりやすい回答を与えてくれる。
Q(koshix):
 ブルックヘブン国立研究所で計画されているEICは,どんな粒子をどの程度のエネルギーで衝突させる加速器ですか。またその目的はなんですか。

A(ChatGPT):
 ブルックヘブン国立研究所(Brookhaven National Laboratory, BNL)で計画されている電子イオンコライダー(Electron-Ion Collider, EIC)は、電子と重イオンを衝突させる次世代の加速器です。以下はEICの主な特徴と目的です。

粒子とエネルギー
1.衝突する粒子:
・電子
・重イオン(例:金イオン、鉛イオンなど)
2.エネルギー:
・電子ビームのエネルギー:約10〜18 GeV(ギガ電子ボルト)
・重イオンビームのエネルギー:約40〜275 GeV

目的
EICの主な目的は、物質の最も基本的な構成要素であるクォークとグルーオン(これらがハドロンを構成する)の相互作用を理解することです。具体的には以下の点が挙げられます。
1.核子の内部構造の解明
 クォークとグルーオンがどのように核子(陽子や中性子)の内部に配置され、どのように運動しているかを明らかにする。
2.核子の質量とスピンの起源の解明
 核子の質量やスピンがどのようにして生成されるのか、特にクォークやグルーオンの寄与を詳しく調べる。
3.強い相互作用の研究
 強い相互作用(量子色力学, QCD)がクォークとグルーオンの間でどのように作用し、ハドロンを形成するのかを研究する。
4.ハドロン物理学の進展
 ハドロンの性質や相互作用に関する新しい知見を提供し、ハドロン物理学の理解を深める。

EICは、既存の加速器では解明が難しい細部まで明らかにすることを目指しており、素粒子物理学および原子核物理学の分野において重要なブレークスルーをもたらすと期待されています。

[1]Electron Ion Collider の物理(後藤雄二,2021)
[2]The Electron Ion Collider(Brookhaven National Laboratry)

2024年5月17日金曜日

放射光施設

先日の日経新聞朝刊,東北大学の放射光施設 NanoTerasu が4月から運用開始したことに寄せて特集記事にしていた。KEKのフォトンファクトリーとSpring-8しか記憶になかったのに,いつの間にか全国10箇所に放射光施設ができていた。日経では,貧乏な日本ではビッグサイエンスはもう無理だから,乏しい予算で選択と集中をやれという,これまでの反省をまったく活かせない別シリーズ記事も出ていたが,放射光施設程度ならば可能らしい。

日本放射光学会には,国内放射光施設へのリンクがある。これを整理すると次のとおり。なお,X線自由電子レーザ施設 SACLA も加えると11箇所である。

1.SPring-8
場所: 兵庫県佐用郡佐用町
運営機関: 理化学研究所、高輝度光科学研究センター (JASRI)
建造年: 1997年,周長: 1436 m,最大エネルギー: 8 GeV,ビームラインポート: 62

2.SACLA(XFEL:X線自由電子レーザー施設)
場所: 兵庫県佐用郡佐用町
運営機関: 放射光科学研究センター(理化学研究所)
建造年: 2011年,全長: 700 m,最大エネルギー: 800 MeV/8.5GeV,ビームラインポート: 6

3.Photon Factory (PF Ring)
場所: 茨城県つくば市
運営機関: 高エネルギー加速器研究機構 (KEK)
建造年: 1982年,周長: 187 m,最大エネルギー: 2.5 GeV,ビームラインポート: 39

場所: 茨城県つくば市
運営機関: 高エネルギー加速器研究機構 (KEK)
建造年: 1987年,周長: 377 m,最大エネルギー: 6.5 GeV,ビームラインポート:8

場所: 宮城県仙台市
運営機関: 東北大学
建造年: 2024年,周長: 349 m,最大エネルギー: 3 GeV,ビームラインポート: 28

場所: 兵庫県上郡町
運営機関: 兵庫県立大学
建造年: 1999年,周長: 119 m,最大エネルギー: 1.5 GeV,ビームラインポート: 14

場所: 佐賀県鳥栖市
運営機関: 佐賀県産業振興機構
建造年: 2006年,周長: 76 m,最大エネルギー: 1.4 GeV,ビームラインポート: 10

場所: 愛知県瀬戸市
運営機関: 公益財団法人科学技術交流財団
建造年: 2013年,周長: 72 m,最大エネルギー: 1.2 GeV,ビームラインポート: 16

場所: 愛知県岡崎市
運営機関: 分子科学研究所 (IMS)
建造年: 1983年,周長: 53 m,最大エネルギー: 750 MeV,ビームラインポート: 15

場所: 広島県広島市
運営機関: 広島大学
建造年: 1997年,周長: 22 m,最大エネルギー: 700 MeV,ビームラインポート: 15

場所: 滋賀県草津市
運営機関: 立命館大学
建造年: 1996年,周長: 3.14 m,最大エネルギー: 575 MeV,ビームラインポート: 14


写真:東北大学NanoTerasuのイメージ(NanoTerasuから引用)

東北大学といえば核理研があった。1966年に設置された東北大学理学部附属原子核理学研究施設だ。300MeVの電子リニアックがあって,原子核の電子散乱の実験をしていたはず。あの水野義之さんが関係していた。1995年に1.2GeVのブースターリングを作った頃から縁遠くなってしまった。現在は,先端量子ビーム科学研究センター電子光理学研究部門に改組されている。その伝統の上にNanoRerasuがある。

2024年5月5日日曜日

オッペンハイマー

日下周一からの続き

毎日のように新ノ口に通っている気がする今日この頃(先週の話)。

オッペンハイマー」の上映がそろそろ終りそうなので(一日の上映回数が減って,一番小さい部屋が割り当てられる),先週のゴジラ -1.0 に続いて,ユニバーサルシネマ橿原に足を運んだ。

映画オッペンハイマーのカラーパートは,核分裂,モノクロパートには,核融合という名前が付けられている。名前の説明なしで物理学者が沢山登場して,カラーとモノクロのバートが時間順序を無視してやってくるので,相当予習していかないと理解できないとの前評判だった。クリストファー・ノーラン脚本・監督作品は,TENETをテレビでみたけれど,時間逆行と巡行の物語が並行して進むのでなかなか複雑な話だった。


物語は,ロバート・オッペンハイマーの学生時代から,マンハッタン計画における原爆開発の中心地,ロスアラモス研究所の所長としてトリニティ実験に成功するまでがひとつ,戦後,プリンストン高等研究所や原子力委員会でルイス・ストローズ(1896-1976)と関わり,1954年のオッペンハイマー聴聞会で国家機密に関する要職から追放されたオッペンハイマー事件がひとつ,この2つの流れが,カラーパートで表される。

モノクロパートの主人公は,ルイス・ストローズである。1953年から1958年まで原子力委員長をつとめた投資銀行家のストローズは,アイゼンハワー政権の商務長官に推挙される。そのための公聴会の部分がオッペンハイマーと絡めながら描かれている。結局,1959年に上院の反対によって,ストロースの商務長官就任は拒否された。それは歴史的な出来事だった。

こうしてモノクロパートと2つのカラーパートが絡まりながら物語は進んでいく。ノーランの脚本はとてもわかりやすく,すべての人物や出来事を把握できなくても,話の筋道は追うことが出来た。オッペンハイマーや妻のキティはやや複雑に描かれているが,悪役ははっきりしている。ストローズとその陰謀に加担した者たち,そしてエドワード・テラーか。

物理学者は,アインシュタインとニールス・ボーアと核磁気共鳴のイジドール・ラビとサイクロトロンのアーネスト・ローレンスと理論核物理のハンス・ベーテがわかっていれば話はつながるのだ。ボンゴをたたいていた若きファインマンは何の役割も果たしていない。


写真:J. ロバート・オッペンハイマー(Wikipediaから引用)

P. S. オッペンハイマーの物理は,1939年にPhysical Reviewに載ったブラックホールの着想が取り上げられていた。日本語訳の物理監修は橋本幸士さんだったが,1ヶ所,原子がふさわしいところが分子のままになっていた。

2024年3月4日月曜日

相対論的な速度の合成則

慣性系S $(ct,x,y,z)$ に対して,時刻 $t=t'=0$ で重なっている慣性系S' $(ct',x'y'z')$を考える。S'がSに対して$x$軸方向に速度$v$で等速直線運動している。このときガリレイ変換では,各座標成分は次式で結ばれる。
$\begin{cases} ct'= c t\\ x'= x - v t  \\ y'= y \\ z'= z \end{cases}$
ローレンツ変換では,$(ct')^2-x'^2-y'^2-z'^2 = (ct)^2-x^2-y^2-z^2$ となることから,
$\begin{cases} ct'= \gamma (c t - \beta x) \\ x'=\gamma (x - \beta ct)  \\ y'= y \\ z'= z \end{cases}$
である。ただし,$\beta = \dfrac{v}{c} , \ \ \gamma = \dfrac{1}{\sqrt{1-\beta^2}}$とする。

(1) 任意の方向のローレンツ変換

2つの慣性系に共通である座標系基本ベクトルを$\ (\bm{e}_x,\ \bm{e}_y,\ \bm{e}_z)\ $とすると,
それぞれの位置ベクトルは,$\bm{r}= x \bm{e}_x + y \bm{e}_y + z \bm{e}_z$と$\bm{r'}= x' \bm{e}_x + y' \bm{e}_y + z' \bm{e}_z$ で与えられる。そこで,ローレンツ変換の式をベクトルで表現すると次のようになる。
$\begin{cases} ct'= \gamma (c t - \beta \bm{e}_x\cdot\bm{r}) \\ \bm{e}_x \cdot \bm{r'} =\gamma ( \bm{e}_x \cdot \bm{r} - \beta ct) =\bm{e}_x \cdot \bm{r} + (\gamma-1)\bm{e}_x \cdot \bm{r}  - \gamma  \beta ct  \\ \bm{e}_y \cdot \bm{r'}=  \bm{e}_y \cdot \bm{r} \\ \bm{e}_z \cdot \bm{r'}=  \bm{e}_z \cdot \bm{r} \end{cases}$
空間成分の3式の各々に対応する成分の基本ベクトルを掛けて加えると次式となる。
$\begin{cases} ct'= \gamma (c t - \beta \bm{e}_x\cdot\bm{r}) \\ \bm{r'} = \bm{r}+(\gamma-1)\bm{e}_x \cdot \bm{r} \bm{e}_x- \gamma \beta ct  \bm{e}_x\end{cases}$
さらに,$ \beta \bm{e}_x = \bm{\beta}$として速度ベクトルを表現すると,$\bm{e}_x = \dfrac{\bm{\beta}}{\beta}$ であるから,
$\begin{cases} ct'= \gamma (c t - \bm{\beta} \cdot \bm{r}) \\ \bm{r'} = \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta} =  \bm{r}+\dfrac{\gamma^2}{\gamma + 1}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\end{cases}$

(2) ローレンツ変換における速度の合成則

S系とS'系とS"系を考える。S'系はS系に対して速度$\bm{v}$,S"系はS'系に対して速度
$\bm{u}$で運動している。$\bm{\beta}=\bm{v}/c,\ \gamma=1/\sqrt{1-\beta^2},\ \bm{\beta}'=\bm{u}/c,\ \gamma'=1/\sqrt{1-\beta'^2} $とする。

$\begin{cases} ct'= \gamma (c t - \bm{\beta} \cdot \bm{r}) \\ \bm{r'} = \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta} =  \bm{r}+\dfrac{\gamma^2}{\gamma + 1}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\end{cases}$
$\begin{cases} ct''= \gamma' (c t' - \bm{\beta'} \cdot \bm{r'}) \\ \bm{r''} = \bm{r'}+\dfrac{\gamma'-1}{\beta'^2}\bigl( \bm{\beta'} \cdot \bm{r'} \bigr) \bm{\beta'}- \gamma' ct'  \bm{\beta'} =  \bm{r'}+\dfrac{\gamma'^2}{\gamma' + 1}\bigl( \bm{\beta'} \cdot \bm{r'} \bigr) \bm{\beta'}- \gamma' ct'  \bm{\beta'}\end{cases}$
$ct''$に第1式と第2式を代入する。
$ct''= \gamma'  \gamma (c t - \bm{\beta} \cdot \bm{r})-\gamma' \bm{\beta'} \cdot \Bigl\{ \bm{r}+\dfrac{\gamma-1}{\beta^2}\bigl( \bm{\beta} \cdot \bm{r} \bigr) \bm{\beta}- \gamma ct  \bm{\beta}\Bigr\}$
$\quad =  \gamma'  \gamma (1 + \bm{\beta'}\cdot\bm{\beta} ) ct -\gamma'(\gamma\bm{\beta}+\bm{\beta'})\cdot \bm{r} - \dfrac{\gamma'(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta}\cdot \bm{r}$
$\quad \equiv \gamma'' (c t - \bm{\beta''} \cdot \bm{r})$
これから,
$\begin{cases} \gamma''  = \gamma'  \gamma (1 + \bm{\beta'}\cdot\bm{\beta}) \\ \gamma'' \bm{\beta''} =  \gamma'(\gamma\bm{\beta}+\bm{\beta'})+ \dfrac{\gamma'(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta} \end{cases}$
$\therefore \bm{\beta''} = \dfrac{1}{\gamma (1 + \bm{\beta'}\cdot\bm{\beta})}\Bigl\{ \bm{\beta'} + \gamma \bm{\beta} +  \dfrac{(\gamma-1)}{\beta^2}(\bm{\beta'}\cdot \bm{\beta}) \bm{\beta}  \Bigr\}$
$ \bm{\beta''}$ が合成された速度ベクトルを光速$c$で割った量となる。

(3) 1次元の場合の速度の合成則

上の式のベクトルの一方向成分だけを取り出して扱うと,
$\displaystyle \dfrac{w}{c}= \dfrac{1}{\gamma \Bigl(1+\dfrac{u v}{ c^2}\Bigr)} \Bigl\{ \dfrac{u}{c} + \gamma \dfrac{v}{c} + (\gamma-1) \dfrac{u}{c} \Bigr\} = \dfrac{u + v}{c \Bigl( 1 + \dfrac{u v}{c^2} \Bigl)} $

2024年2月28日水曜日

束縛力のする仕事

束縛された質点の運動において,その進行方向と垂直な抗力(束縛力)が働いているとき,位置ベクトル$\bm{r}$にある質点に対して,束縛力$\bm{F}_R$がする仕事$W$はゼロになる。これは,$\displaystyle W=\int \bm{F}_{R}\cdot dr = 0\ $からくる。


図:束縛運動をするバネで結ばれた2質点系とその重心

上図のように,2つの質点がバネで結ばれ互いに内力を及ぼしている系を考える。それぞれの質点は原点を通る2本の直線上を運動するように束縛されている。2つの質点の質量が等しく,初期位置として原点から等距離に静止していたとする。このときのバネの長さが自然長より短ければ,$x$軸方向に弾性力(斥力)が働く。この斥力(内力)の直線方向の成分によって,質点は$y$軸正方向の運動成分を持つことになる。

一方,束縛された質点が直線方向に運動するのは,各質点に働く束縛力(外力)とバネの弾性力(内力)の合力が直線方向を向くからである(摩擦力はないとする)。ところで,この外力(束縛力)は,質点の移動において仕事をすることはない。仕事をするのは,内力(バネの弾性力)である。

この系における質点の重心の運動を考えてみる。重心の運動には系の内力(弾性力)は寄与せず,外力の和だけが運動を決定する。ところで,先ほど見たように外力(束縛力)は仕事をしないはずだ。それにもかかわらず重心は$y$軸方向に運動し,運動エネルギーを持つことになる。これはなぜかというのが,よく問われる定番の問題だ。

外力と内力が働く質点系の運動方程式は次のようになる。
$\displaystyle m_i \dfrac{d^2 \bm{r}_i}{dt^2} = \bm{F}^{ex}_i + \sum_{j=1}^{N} \bm{F}^{in}_{ji} \quad (i = 1 \cdots N)$
すべての粒子に対して加えると,内力が作用反作用の法則から打ち消しあうので,重心座標($\bm{r}_G = (1/M) \sum_{i=1}^N \bm{r}_i, \quad M=\sum_{i=1}^N m_i$)と相対座標($\bm{\tilde{r}}_i = \bm{r}_i -\bm{r}_G$)に対する運動方程式が得られる。
$\displaystyle M \dfrac{d^2 \bm{r}_G}{dt^2} = \sum_{i=1}^N \bm{F}^{ex}_i = \bm{F}^{ex}$,$\displaystyle m_i \dfrac{d^2 \bm{\tilde{r}}_i }{dt^2} = \bm{F}_i^{ex} +\sum_{j=1}^N\Bigl( -\dfrac{m_i}{M} \bm{F}_j^{ex} + \bm{F}_{ji}^{in} \Bigr)\ \  (i = 1 \cdots N)$
それぞれの式の両辺に,重心の速度や相対速度をかけて積分することによって,運動エネルギー(全体は$T$,重心運動は$T_G$,相対運動は$\tilde{T}$)の変化と仕事$W$の関係を表わす式(エネルギー保存則につながるもの)が得られる。

$ \displaystyle T(t_2)-T(t_1)= \sum_{i=1}^N \int_{t_1}^{t_2} \bm{F}_i^{ex}\cdot \dfrac{d\bm{r}_i}{dt} dt + \sum_{i=1}^N \sum_{j=1}^N  \int_{t_1}^{t_2} \bm{F}_{ij}^{in} \cdot \dfrac{d\bm{r}_i}{dt} dt $
$\displaystyle \hspace{2.5cm} = \sum_{i=1}^N W_i^{ex}(t_1 \rightarrow t_2) + \sum_{i=1}^N \sum_{j=1}^N W_{ij}^{in}(t_1 \rightarrow t_2)$
$\displaystyle \hspace{2.5cm} = W^{ex}(t_1 \rightarrow t_2) + W^{in}(t_1 \rightarrow t_2)  $
$ \displaystyle T_G(t_2)-T_G(t_1)  = \int_{t_1}^{t2}\bm{F}^{ex}\cdot \dfrac{d \bm{r}_G}{dt} dt = \overline{W}_G(t_1 \rightarrow t_2) $
$ \displaystyle \tilde{T}(t_2)-\tilde{T}(t_1) = W^{ex}(t_1 \rightarrow t_2) - \overline{W}_G(t_1 \rightarrow t_2) + W^{in}(t_1 \rightarrow t_2)$ 

ここで,$\overline{W}_G^{ex} =  \sum_{i=1}^N \sum_{j=1}^N \dfrac{m_i}{M} \bm{F}_{j}^{ex} \cdot \dfrac{d\bm{r}_i}{dt} dt$ は外力に由来しているが,各要素に分解してみると仕事の形はしておらず(作用する外力と座標の番号は等しくない$\ i \neq j\ $の$\ \bm{F}_{j}^{ex} \cdot d\bm{r}_i\ $が含まれる),このため擬仕事(pseudo work)とよばれることがある。

これらの式を今の問題に当てはめるとどうなるか。束縛力(外力)の和は,重心に対して仕事$\overline{W}_G^{ex}$をする。しかし,束縛力(外力)によって各粒子がなされる仕事の和$W^{ex}$は0である。重心の運動エネルギーの増加に寄与するのは,$W^{ex}$ではなく,$\overline{W}_G^{ex}$であり,これは必ずしもゼロにならないのだ。$\overline{W}_G^{ex} =\dfrac{1}{2} \Bigl( \int  \bm{F}_1^{ex}\cdot d\bm{r}_2 + \int \bm{F}_2^{ex}\cdot d\bm{r}_1 \Bigr)$

問題の設定では,束縛条件から,外力(束縛力)と内力(弾性力)の間に条件式が課されるため,外力を内力によって表すことができる。これによって,擬仕事を内力の仕事の形で表せるのだが,一般的には重心の運動エネルギーの増加を各粒子に対する内力による仕事だけで表すことはできない。

2024年1月23日火曜日

藤岡作太郎

就寝中にトイレに行きたくなるとき,眠りが浅くなって夢を見る。いや,半分覚醒してまどろんでいる状態なので夢ではないのかもしれない。こうした夢と覚醒がシュレーディンガーの猫のようになって区別しにくい時間がしばしば訪れる。

昨晩のその時間は,「鈴木大拙」についての説明を誰かに一生懸命しようとしていた。ただ,名前が思い出せないのである。えーっと,金沢出身で,西田幾多郎と友達で,いるでしょう,禅の研究で(善の研究ではない)海外に名を馳せた,誰だったか,ほらあの(静かな水面のある落ち着いた記念館のイメージを想起しつつ),えーっと,三太郎とよばれていたから,本名は○太郎のはずだけれど,それではわからないし・・・

そうこうしているうちに目が覚めてトイレに行ったが名前の記憶はオフのまま。再び布団に潜ってもまだ思い出せない。そのまま眠りに入ると,明け方近くの夢の中でようやく思い出すことができた。あ,鈴木大拙だ!朝起きても思い出した量子状態は崩壊することなく維持されていた。


三太郎というのは誰だったろうかと,Wikipediaで鈴木大拙=貞太郎(1870-1966)を調べてみると「同郷の西田幾多郎(1870-1945)、藤岡作太郎(1870-1910)とは石川県専門学校( 1881- 第四高等中学校 1887-)以来の友人であり、鈴木、西田、藤岡の三人は加賀の三太郎と称された」とあった。

藤岡作太郎はどんな人かとさらに調べると,日本で最初の文学博士,国文学(国文学全史平安朝篇)の人だった。その長男が物理学者で物理教育学会の会長も務めた藤岡由夫(1903-1976),孫がレーザ工学の藤岡知夫(1935-2022),ひ孫がテレビでおなじみの指揮者の藤岡幸夫(1962-)だった。

藤岡作太郎の長女の綾が,長男の藤岡由夫の友人の中谷宇吉郎(1900-1962)と結婚しているが若くして亡くなっている。孫の藤岡知夫の妻は原子物理学の菊池正士(1902-1974)の長女であり,これをたどると箕作家(みつくりけ)を通じて初代阪大総長の長岡半太郎(1865-1950)までつながる。なお,長岡半太郎と本多光太郎(1870-1954)と鈴木梅太郎(1874-1943)は理研の三太郎だ。

2024年1月19日金曜日

トリチウム(3)

トリチウム(2)からの続き

非常勤で担当している物理科学概説の授業も,後3回を残すばかりになった。最後の授業日の準備をしているが,テーマは原康夫さんの教科書である第5版 物理学基礎の第25章「原子核と素粒子」だ。

トリチウムのベータ崩壊で話を終らそうと思ったら,宇宙線と上層大気の衝突によって年間に生成されるトリチウム量のところでつまづいてしまった。茨城大学の鳥養さんの資料では,年間72 PBq/y(PBq=ベタベクレル=10^15ベクレル)生成されるとなっている。

そもそも,ベクレルは単位時間当たりの崩壊数なので時間の逆数になっている。これをさらに時間で割った量が生成量であるというのはどういうことかと,かつて理解していたところで再度引っかかってしまった。

70歳を過ぎるとこんなことが増えていくのだろう。一日中家の中で失せ物を探している時間がどんどん増加していくのと同様に,頭の中の失せ物を探す時間が増えていくのだ。こんなときに,生成AIが頼りになれば有難いのだけれど,これが現時点ではあまりあてにはならない。

さて,時間$\Delta t$の間に崩壊する原子核の数は,$\Delta N = \lambda N \Delta t$である。$\lambda = \frac{0.693}{T_{1/2}}$は崩壊定数であり,時間の逆数の次元を持っている。それは不安定な原子が崩壊する確率を表している。言い換えれば,放射性同位元素の物質量$N$に$\lambda$を掛けたものがその物質のベクレル数に等しいことから,放射性同位元素の物質量を,単位が異なるベクレル数で表現しても差し支えないだろうという考えだ。

あるいは,本質的に時間とともに変化する存在である放射性同位元素の量を表現するのに,時間的に不変な状態を想定しているモルやkgで表すのは適当ではなく,むしろその時点でのベクレル数で表わした上で,今後はこの割合で減少していくということに注意を喚起するという習慣があると善意に理解しよう。

まあ,トリチウムが放射平衡している場合は,時間とともに変化しないけれども,いつ何時,核施設の事故があるかもしれない。

さて,2000年のUNSCEARの資料[1] に,Table 4 Production rates and concentrations of cosmogenic radionuclides in the atmosphereという表がある。これによると,宇宙線によるトリチウムの単位面積,単位時間当たりの生成数は,$ 2500 /({\rm m^2 s}) $ であり,地球表面積,$ 5.1 \times 10^{14} {\rm m^2} $との積から,1秒間に,$\mu = 1.28 \times10^{18} $個/sのトリチウム原子が生成される。1年間($y =3.15 \times 10^{7} {\rm s} $)では $\mu y = 4.0 \times 10^{25}$個となる。一方,トリチウムの崩壊定数は,$\lambda = 0.693/ ( 12.3 × 3.15 × 10^7) /{\rm s} $ なので,$\mu y \lambda $によってベクレルに換算すれば,$72 \times 10^{15} {\rm Bq}$が得られる。

また,この自然の機構によって地球上に存在するトリチウムの総量$N(t)$は,次の微分方程式$\frac{dN(t)}{dt}=-\lambda N(t) + \mu $の平衡解 $N(\infty)$で与えられ,$N(\infty) = \frac{\mu}{\lambda} = 7.2 \times 10^{26}$個= $1.28 \times 10^{18}$Bqである。

これを使って,大気中の平均トリチウム濃度を計算してみる。資料[1]では対流圏の体積が,$3.62 \times 10^{18} {\rm m^3}$と与えられ,$0.35 {\rm Bq / m^3}$となる。ところが資料[1]では,$1.4 {\rm mBq / m^3}$となっていて,何だか250倍大きくなってしまうのだ。なんで?

あら,表にはfractional amount in atomosphereというのがあって,その係数が1/250=0.004になっていた。トリチウムはほとんどHTOの形態で存在しているので,ほとんどが雨水/海水に溶けてしまうということなのかもしれない。

図:トリチウムの概念図(東京電力から引用

[2]環境トリチウムについて(鳥養祐二)
[3]トリチウムの環境動態(百島則幸)
[4]大気中トリチウム濃度の変遷と化学形態別測定(宇田達彦・田中将裕)


2024年1月18日木曜日

コンストラクタ理論

コンストラクタ理論というものがあることを知った。知るには段階があるのだけれど,これは名前とボンヤリした意味がわかるという第1段階。自分の頭の中で「知っている」というのはだいたいこれにあたる。

対象が,具体的な事物なのか,抽象的な事柄なのかによっても話が違ってくる。例えば,有馬温泉知ってますかという問いに対して,(1) 名前を聞いたこともない,(2) 名前は聞いたことがある,(3) その属性(場所・由来)なども知っている,(4) 写真や動画での紹介を見た,(5) 現地を訪問したことがある,(6) 宿泊して観光したことがある,(7) ある程度の期間滞在して暮らしていた,(8) 長い間にわたって現地で生活していた。などなど。

今では,(1)-(4) は簡単に実現できる。仮想空間技術が進歩すれば,(5) や場合によっては(6) あたりまでは手が届くようになるのかもしれない。視聴覚以外の体験はまだ難しい。食べ物について同様に自分が知っているかどうかという問題を考えると,あるものを食べるという体験と結びついた記憶の話や,文化的な多様性のなかで様々な派生物の範囲をどこまで理解してそのなかで位置づけることができているかなど,さらに話が複雑になってくる。

ある事柄に関するプロフェッショナルというのは,結局どれだけの具体的な体験を積み重ねてきてそれらをネットワークする知恵を発達させているのかということに帰着するような気がする。

そんなわけで,このブログのように浅く(広くもない,人間の興味はかなり限定される)知った気分になっているというのに,どれほどの意味があるのかということを改めて反省する。

話が,全然進まない。コンストラクタ理論の件である。受け売りの要約では次のようになる。生成AIや翻訳ツールがあるので,十分な読解を経なくてもわかったようなまとめができてしまう。それはそれで問題なのだ。抽象的な事柄の意味を知っているかどうかというのは,多次元空間の連続的なスペクトルのどこに位置するかみたいな面倒な話にはなりそうだ。
コンストラクター理論とは、物理学における基本法則を定式化する新しいアプローチである。世界を軌道、初期条件、力学的法則で記述する代わりに、構成理論では、どのような物理的変換が可能で、どのような変換が不可能か、そしてその理由についての法則を記述する。この強力な転換は、現在は本質的に近似的とみなされているあらゆる興味深い分野を基礎物理学に取り込む可能性を秘めている。例えば、情報、知識、熱力学、生命の理論などである。

量子計算理論の創始者の一人であるデイヴィッド・ドイッチュ(1953-)が2012年に提案し,キアラ・マレットとともにオックスフォード大学で展開している理論である。

[1]Constructor Theory (D. Deutsch, 2012)
[2]Constructor Theory of Information (D. Deutsch, C. Marletto, 2014)
[3]Constructor Theory of Life (C. Marletto, 2014)
[4]Constructor Theory of Probability (C. Marletto, 2015)

2023年12月7日木曜日

アンペールの法則(2)

アンペールの法則(1)からの続き

前回の一般的な結果を得るまでにあれこれ考えた。普通はアンペールの法則の単純な形態,つまり直線電流のまわりの円周上の磁束密度に対する,$2 \pi r B(r) = \mu_0 I$から出発して一般化するのかと思った。しかし,そもそも簡単なアンペールの法則とは直線電流まわりの磁束密度ベクトル場を与えるもので,答えは既に出ていたのだった。

あれこれの過程での計算は,結局,線積分の練習問題だった。


図:アンペールの法則の線積分経路

方針:磁束密度を測定する点への位置ベクトル$\bm{r}$とその軌跡として経路$C=r(\theta)$を考える。線要素$d\bm{r}$を変数,$r,\theta$であらわし,さらに経路条件から$r$を消去して,線積分要素を$\theta$の関数として表す。磁束密度は$r$の関数なので,これも$\theta$の関数とみることができる。その結果,線積分要素$dB=\bm{B}\cdot d\bm{r}$は$\theta$の関数になって,角度積分を実行することができる。

領域Ⅰ(左図の$0 \le \theta \le \pi/4$):$r=a/\cos\theta$,$dy = a d\theta / \cos^2 \theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{\cos^2\theta}{a} \frac{a}{\cos^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅱ(左図の$\pi/4 \le \theta \le \pi/2$):$r=a/\sin\theta$,$dx = -a d\theta / \sin^2 \theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{-\sin^2\theta}{a} \frac{-a}{\sin^2 \theta} d\theta$,$B=\frac{\mu_0 I}{8}$
領域Ⅲ(左図の$\pi/2 \le \theta \le \pi$):$r=a/(\cos\theta - \sin\theta)$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{\sin\theta - \cos\theta}{a} \frac{a}{\sin \theta - \cos \theta} d\theta$,$B=\frac{\mu_0 I}{4}$
領域Ⅵ(左図の$\pi \le \theta \le 2\pi$):$r=a$,$d\bm{r} = a (-\sin\theta , \cos \theta) d\theta$
  $dB=\frac{\mu_0 I}{2 \pi} \frac{1}{a} a d\theta$,$B=\frac{\mu_0 I}{2}$
領域Ⅴ(右図の$-\pi \le \theta \le \pi$):$r=\sqrt{a^2+d^2+2 a d \cos\theta}$,$d\bm{r} = a(-\sin\theta, \cos\theta) d\theta$
  $\displaystyle dB = \dfrac{\mu_0 I}{2 \pi}\int_{-\pi}^{\pi}\dfrac{a(a+d\cos\theta)}{a^2+d^2+2 a d \cos\theta}d\theta = \dfrac{\mu_0 I a}{2 \pi} \int_{-\infty}^{\infty} \dfrac{(a+d)+(a-d) t^2}{(a+d)^2+(a-d)^2 t^2}\dfrac{2 dt}{1+t^2}$
$\displaystyle = \dfrac{\mu_0 I a}{2 \pi a} \int_{-\infty}^{\infty}  \Bigl\{ \dfrac{1}{1+t^2} +\dfrac{(a-d)(a+d)}{(a+d)^2+(a-d)^2 t^2} \Bigr\} dt = \dfrac{\mu_0 I}{2\pi} (\pi + \pi) = \mu_0 I$


2023年12月6日水曜日

アンペールの法則(1)

物理科学概説の授業で,アンペールの法則のところに入った。積分形では,$\displaystyle \oint_C \bm{B}(\bm{r})\cdot d\bm{r}=\mu_0 I$である。

十分長くてまっすぐの導線を流れる電流のまわりの磁束密度$\bm{B}(\rm{r})$の強さ$B(r)$は,電流の強さ$I$に比例し,電流からの距離$r$に反比例する。その向きは電流の向きに右ネジが進むときにネジが回る方向(電流を中心とした半径$r$の円の接線方向)である。

この実験事実を式で表現する。直線電流上の一点を原点に取って,磁束密度ベクトルは原点をとおり電流に垂直な平面内にある。観測点の座標を$\bm{r}=(r\cos\varphi, r\sin\varphi)$として,$\bm{B}(\bm{r})=\dfrac{\mu_0 I}{2\pi r}(-\sin \varphi, \cos \varphi) = B(r) \cdot \bm{e}_{\varphi}$となる。このとき,$\bm{B}(\bm{r})\cdot \bm{r}=0$となっている。

このとき,積分形のアンペールの法則を導けるかという問題だ。


図:アンペールの法則の積分形の導出

積分形のアンペールの法則では,空間中に任意の閉経路Cを設定して,この経路Cに対する磁束密度の線積分を求める。線積分要素は$dB = \bm{B}(\bm{r})\cdot d\bm{r}= B(r) dr \cos\theta$となる。一方,線要素の磁束密度方向の成分は,$dr \cos \theta = r d\varphi$である。そこで,$dB = B(r) r d\varphi = \dfrac{\mu_0 I}{2 \pi} d\varphi$となる。$\therefore \oint_C \bm{B}(\bm{r})\cdot d\bm{r} = \int_0^{2\pi}  \dfrac{\mu_0 I}{2 \pi} d\varphi = \mu_0 I$

したがって,無限直線電流に対して,3次元空間内でこれを囲む任意の閉経路での磁束密度の線積分の値は,この経路を貫く電流に磁気定数をかけたものとなる。


2023年12月3日日曜日

球形キャパシタ

球形キャパシタの問題を物理科学概説の中間テストで出題した。

教科書の例題と同じ単純な問題のつもりだったけれど,2つの球殻に与える電荷の記述を省略したため,アースの取り方によって話が変わるのだった。それが教科書の章末課題に書いてあったので,良く勉強した学生さんはそちらを参照していた。


図:球形キャパシタのイメージ

半径$a$と$b$の同心の導体球殻があり,それぞれに電荷$q_a$と$q_b$を与えたとき,それぞれの電位が$V(a)$と$V(b)$になったとする。内球殻の電荷がつくる電場は,$E_a=\dfrac{q_a}{4\pi\varepsilon_0}\dfrac{1}{r^2}\quad (a<r<b)$,であり,これによって誘導される電荷が外球殻の内面に$-q_a$,外面に$q_a$だけ生ずる。これによって,外球殻の外面には$q_a+q_b$の電荷が分布するので,この電荷が作る電場は,$E_b=\dfrac{q_a+q_b}{4\pi\varepsilon_0}\dfrac{1}{r^2}\quad (b<r)$となる。

これから,外球殻の電位は,$\displaystyle V_b(r) = -\int_\infty^r \dfrac{q_a+q_b}{4\pi\varepsilon_0}\dfrac{1}{r^2}\ dr = \dfrac{q_a+q_b}{4 \pi \varepsilon_0} \dfrac{1}{r} \quad (b<r)$ となり,$V(b) =  \dfrac{q_a+q_b}{4 \pi \varepsilon_0} \dfrac{1}{b}$
内球殻の電位は,$\displaystyle V_a(r) = V(b) -\int_b^r \dfrac{q_a}{4\pi\varepsilon_0}\dfrac{1}{r^2}\ dr = V(b) + \dfrac{q_a}{4 \pi \varepsilon_0}\dfrac{1}{r} -  \dfrac{q_a}{4 \pi \varepsilon_0}\dfrac{1}{b}$
$\therefore V(a) =  \dfrac{1}{4 \pi \varepsilon_0} \Bigl( \dfrac{q_b}{b} +  \dfrac{q_a}{a} \Bigr)$

(1) 外球殻が接地されている場合
$V(b)=0$より$q_b = -q_a$となる。$\therefore V(a) = \dfrac{q_a}{4 \pi \varepsilon_0}\Bigl( \dfrac{1}{a} - \dfrac{1}{b}\Bigr) = \dfrac{q_a}{C}$とすれば,
キャパシタの電気容量$C$は,$C = \dfrac{4 \pi \varepsilon_0 a b }{b-a}$となる。

(2) 内球殻が接地されている場合
$V(a)=0$より$q_a = -\dfrac{a}{b} q_b$となる。$\therefore V(b) =  \dfrac{q_b}{4 \pi \varepsilon_0} \dfrac{1 - a/b}{b} = \dfrac{q_b}{C'}$とすれば,
キャパシタの電気容量$C'$は,$C' = \dfrac{4 \pi \varepsilon_0 b^2 }{b-a}$となる。

このとき,$C' = C +  4 \pi \varepsilon_0 b$となって,外球殻をキャパシタと考えたときの電気容量とCとの並列接続の式となっている。

2023年12月2日土曜日

円軌道はむずかしい

万里鏡1号弾道ミサイルの軌道(2)からの続き

北朝鮮の弾道ミサイルの簡単なシミュレーションコードをMathematicaで作っていた。これを少しアレンジすれば人工衛星を軌道に投入するところまでできそうな気がする。

早速,以前のコードを修正してみた。まずは通常の加速直後に角度方向だけに加速度を加えるようにしたがうまくいなかい。打ち上げ加速は投射角の方向になっているので,動径速度成分が大きく残っているうえ,加速すれば軌道は膨らむ。このため,離心率の大きな長円軌道になって地表にぶつかってしまうか,地球の重力圏から脱出してしまうのだ。

次に,打ち上げ加速の直後に空白時間をおいて,動径速度成分が小さくなったところで角度方向に加速できるようにした。それでもうまくいかない。簡単な試行錯誤では周回軌道にのせるのが難しい。そもそも角度方向に加速するということは面積速度すなわち角運動量をふやし,動径方向の微分方程式で軌道半径を膨らませる方向に作用してしまう。

そこで,後期加速では衛星をその速度ベクトルの方向に加速することにした。$t=0$で速度ベクトルをとりだすところに発散があったので,これを回避するため,地球の自転による2倍面積速度$h(t)$の初期値として,$h(0) = R^2\omega=R^2 \frac{2\pi}{24*3600}=2930$ km$^2/$sを与えた。初期加速度はこれまでの$\ a=0.0446$として$30$秒加速する。その後,800秒程度休止した後に,後期加速度$\ b=0.1445$(ここを微調整した)で$250$秒加速すると,なんとか軌道に投入することができた。投射角は$s=45$度,初期加速における燃料比は$p=0.85$であり,加速方向の角度には$0.3$をかけて動径成分を抑えた。

なかなか難易度の高いゲームである。衛星の軌道高度が1200km程度の準円軌道となっている。これを500kmにしなさいといわれても,こんな単純な2段階制御ではちょっと難しい。なお,プログラムの検証のため,$r=6850$kmの宇宙空間で第一宇宙速度に相当する$v=\sqrt{gr}=8.2$ km/sを角度方向の初速度として与えると,正確に円軌道を描くことが確かめられた。

g = 0.0098; R = 6350; τ = 30; τs = τ*27; τt = 250; p = 0.85;
 a = 0.0446; b = 0.1445 a; s = 45 Degree; T = 15400; 
fs[t_] := 0.3*ArcTan[r[t]*r'[t]/ h[t]]
fr[t_, τ_] :=  a*Sin[s]*HeavisideTheta[τ - t] + 
   b*Sin[fs[t]]*HeavisideTheta[t-τs-τ]
   *HeavisideTheta[τ+τs+τt-t]
ft[t_, τ_] :=  a*Cos[s]*r[t]*HeavisideTheta[τ - t] + 
   b*Cos[fs[t]]*r[t]*HeavisideTheta[t-τs-τ]
   * HeavisideTheta[τ+τs+τt-t]
fm[t_, τ_] := -p/(τ - p*t)*HeavisideTheta[τ - t]
sol = NDSolve[{r''[t] == -fm[t, τ]*r'[t] 
   +h[t]^2/r[t]^3 -g R^2/r[t]^2 +fr[t, τ],
   r[0] == R, r'[0] == 0, 
   h'[t] == -fm[t, τ]*h[t] + ft[t, τ], 
   h[0] == 2930 + 0*Sqrt[g] R^(3/2)}, {r, h}, {t, 0, T}]
f[t_] := r[t] /. sol[[1, 1]]
d[t_] := h[t] /. sol[[1, 2]]
Plot[{6350, f[t]}, {t, 0, T}]
Plot[{f[t + 1] - f[t], d[t]*R/f[t]^2, d[t]/f[t]},
 {t, 0, T}, PlotRange -> {-5, 15}]

 


図:苦労すると有難みがわかる衛星の準円軌道のグラフ

P. S. もう少しがんばると,軌道高度650km(r=6980km)の準円軌道まで達成できた。
g = 0.0098; R = 6350; τ = 25; τs = τ*15.3; τt = 350;  p = 0.85;
a = 0.0446; b = 0.1275 a; s = 45 Degree; T = 15400; 

2023年11月25日土曜日

アマテラス粒子

観測史上2番目にエネルギーの高い宇宙線が見つかったというニュース。11月24日のサイエンスオンラインに論文が掲載されるはずだけれど,まだ見当たらない。

実験史上最大というプレスリリースになっているのは,米国ユタ州のテレスコープアレイ実験(2008-,760㎢に1.2km間隔で507台の大気チェレンコフカウンターを並べた装置)においてという意味だ。これまでに観測された史上最大エネルギーの宇宙線は,同じユタ州のダグウェイ実験場で1991年に見つかった,オーマイゴッド粒子だ。そのエネルギーは,3.2±0.9 × 10^20 eV = 320 EeV(エクサ電子ボルト)= 51 J(ジュール)である。

今回,大阪公立大学や東京大学宇宙線研究所などのメンバーを含む国際共同実験チームが見つけた宇宙線は,アマテラス粒子と命名され,そのエネルギーは 244 EeV = 38 J である。これがマスコミに報道されるとき,40Wの電球を1秒点灯させるだけのエネルギーというのはOKだけれど,1gで地球を破壊するほどのエネルギーだという例えに引っかかった。

この宇宙線の正体となる粒子が何であるか(粒子1個の質量)がわからなければ,1gに相当する粒子数が定まらない。とりあえず,銀河宇宙線の大半を占める陽子だとすると,質量は,1.67 × 10^-27 kg なので,6 × 10^23 個分にあたる。1g 分のアマテラス粒子群全体の持つエネルギーは,2.4 × 10^25 J なのだけれど,これで地球は破壊できるのだろうか。

広島に投下されたリトルボーイのエネルギーは,7 × 10^16 J らしいので,3億個の広島型原爆を落とされたことになる。また,チクシュルーブ・クレーターを作って恐竜を絶滅させたといわれる直径10km,速度20km/sの小惑星は,リトルボーイの1億倍のエネルギーに相当するので,この小惑星衝突の3個分のエネルギーに相当する。この表現のほうがわかりやすかっただろうか?

宇宙線研究所のプレスリリースには共同実験代表者の荻尾彰一さんの写真が大きく載っていた。彼は,大阪市立大学時代には物理教育学会近畿支部長を務められ,いろいろとお世話になったのだった。


図:大阪公立大学のプレスリリースから引用(©Ryuunosuke Takeshige)


2023年11月24日金曜日

ケプラー方程式

楕円軌道からの続き

軌道の形ではなく,時間発展を考える。
出発点は,$\bm{r}(t) = (x(t),y(t)) = ( a(\cos\theta(t) -e), a\sqrt{1-e^2} \sin \theta(t))$と,面積速度が一定であるということだ。
長半径$a$,短半径$b$,離心率$e$の 楕円の面積$S$は $S=\pi a b = \pi a^2 \sqrt{1-e^2}$なので,周期を$T$とすると,面積速度は,$\dfrac{dS}{dt}= \dfrac{S}{T} = \dfrac{\pi a^2 \sqrt{1-e^2}}{T}$である。

次に,楕円上の位置ベクトル$\bm{r}(t)$から面積速度を計算する。
$\dfrac{dS}{dt}= \frac{1}{2}(\bm{r} \times \dot{\bm{r}})_z = \frac{1}{2}(x \dot{y} - \dot{x} y) $
$= \frac{1}{2}  \{ a(\cos\theta-e) \cdot a\sqrt{1-e^2} \cos\theta \dot{\theta} - (-a \sin \theta \dot{\theta} ) \cdot a\sqrt{1-e^2}\sin \theta \}$
$= \dfrac{a^2 \dot{\theta}\sqrt{1-e^2}}{2} (\cos^2 \theta -e \cos\theta + \sin^2 \theta) =  \dfrac{a^2 \dot{\theta}\sqrt{1-e^2}}{2} (1 -e \cos\theta ) $

この2つの式が等しいので,$\dfrac{2\pi}{T} = \dot{\theta} ( 1- e \cos\theta)$となる。この両辺を時間$t$で積分して,$t=0$で$\theta=0$とすれば,次のケプラー方程式が得られる。
$\dfrac{2\pi}{T} t = \theta -\sin \theta \quad ( 0 \le t \le T \ \ \rightarrow\ \  0 \le \theta \le 2\pi) $
この解$\theta(t)$ を$\bm{r}(t) = (x(t),y(t)) = ( a(\cos\theta(t) -e), a\sqrt{1-e^2} \sin \theta(t))$に代入すれば,位置ベクトルが時間の関数として表される。

Mathematicaで計算してみた。
f[t_, e_] := FindRoot[u - e Sin[u] == 2 Pi t, {u, 0}]
g1[a_, e_] := 
  Table[{a (Cos[u] - e), a Sqrt[1 - e^2] Sin[u]} /. f[k/52., e], {k, 1, 52}];
gp1 = Graphics[{PointSize -> Large, Red, Point[g1[1, 0.2]]}];
g2[a_, e_] := 
 Plot[{a Sqrt[1 - e^2] Sqrt[1 - (x/a + e)^2], -a Sqrt[1 - e^2] Sqrt[
     1 - (x/a + e)^2]}, {x, -a (1 + e), a (1 - e)}, 
  AspectRatio -> Automatic, PlotStyle -> Blue]
gp2 = g2[1, 0.2];
Show[gp2, gp1]

図:ケプラー軌道の計算例(a=1, b=0.98,  e=0.2, r_ap=1.2, r_pe=0.8)